From 1 - 10 / 48
  • The response to emergency situations such as floods and fires demand products in short time frames. If you use remote sensing then the response typically involves detailed examination of imagery in order to determine the spectral bands, ratios and associated thresholds that map the desired features such as flood or burn extent. The trial and error process associated with manual threshold selection is often time consuming and can result in significant errors due to confounding factors such as clouds and shadowed areas. By modelling features such as flood waters or fire scars as Gaussian distributions, allowing for fuzzy thresholds with neighbouring features, the required thresholds can be automatically derived from the imagery and emergency events can have extents determined much more rapidly. Automatic threshold selection minimises trial and error, thereby dramatically reducing processing turn-around time.

  • User Manual - Australian Flood Studies Database Search

  • Floods are Australia's most expensive natural hazard with the average annual cost of floods estimated at AUD$377 million (BITRE 2008). This figure is likely to have risen following the widespread and devastating floods across eastern Australia that occurred over the summer of 2010-11. The development of tools to support the identification and analysis of flood risk is an important first step in reducing the cost of floods in the community. The Australian Government through Geoscience Australia (GA) has been leading the development of tools which assist in flood intelligence, modelling and damage assessment. An overview of three of these tools will be provided in this presentation. Note: Rest of abstract is too long for space provided.

  • The Australian Flood Risk Information Portal (the portal) is an initiative of the Australian Government, established following the devastating floods across Eastern Australia in 2011. The portal is a key component of the National Flood Risk Information Project (NFRIP), and aims to provide a single point of access to Australian flood information. Currently much of Australia's existing flood information is dispersed across disparate sources, making it difficult to find and access. The portal will host data and tools that allow public discovery, visualisation and retrieval of flood studies, flood maps, satellite derived water observations and other related information, all from a single location. The portal will host standards and guidelines for use by jurisdictions and information custodians to encourage best practice in the development of new flood risk information. While the portal will initially host existing flood information, the architecture has been designed to allow the portal content to grow over time to meet the needs of users. The aim is for the portal to display data for a range of scenarios from small to extreme events, though this will be dependent on stakeholder contributions. Geoscience Australia's Australian Flood Studies Database is the portal's data store of flood study information. The database includes metadata created through a purpose-built data entry application, and over time, information harvested from state-operated catalogues. For each entry the portal provides a summary of the flood study, including information on how the study was done, what data was used, what flood maps were produced and for what scenarios, as well as details on the custodian and originating author. If the study included an assessment of damage, details such as estimates of annual average damage, or the number of properties affected during a flood of a particular likelihood will also be included. During the last phase of development downloadable flood study reports and their associated flood maps have been added to the portal where available. As the portal is populated it will increasingly host mapped flood data, or link to flood data and maps held in authoritative databases hosted by State and Territory bodies. Mapping data to be made accessible through the portal will include flood extents and to a lesser degree information on water depths. The portal will also include water observations obtained from Geoscience Australia's historic archive of Landsat imagery. This data will show whether a particular location was 'wet' at some point during the past 30 years. While this imagery does not necessarily represent the peak of a flood or show water depth, the data will support the validation and verification process of hydrologic and hydraulic flood modelling. This work will prove useful particularly in rural areas where there is little or no flood information. The portal also provides flood information custodians with the ability to either upload mapped data directly to the portal or to make this data accessible via web services. Data management tools and standards, developed through NFRIP, will enable data custodians to map their data to agreed standards for delivery through the portal. A portal framework and supporting principles has been developed to guide the maintenance and development of the portal.

  • An integrated multi-scale approach has been used to map and assess shallow (<100m) aquitards in unconsolidated alluvial sediments beneath the Darling River floodplain. The study integrated a regional-scale (7,500km2) airborne electromagnetics (AEM) survey with targeted ground electrical surveys, downhole lithological and geophysical (induction, gamma and nuclear magnetic resonance (NMR)) logging, hydraulic testing and hydrogeochemistry obtained from a 100 borehole (7.5km) sonic and rotary drilling program. Electrical conductivity mapping confirmed a relatively continuous lacustrine Blanchetown Clay aquitard, mostly below the water table. The Blanchetown Clay is typically 5-10m thick with a maximum thickness of 18m but, importantly, can also be absent. Variations (up to 60m) in the elevation of the aquitard top surface are attributed partly to neotectonics, including warping, discrete fault offsets, and regional tilting. Hydrograph responses in overlying and underlying aquifers, laboratory permeameter measurements on cores, and hydrogeochemical data demonstrate where the Blanchetown Clay acts as an effective aquitard. In these areas, the AEM and induction logs can show an electrical conductivity (EC) decrease towards the centre of the clay rich aquitard, contrary to the typical response of saturated clays. Even though the aquitard centre is below the watertable, core moisture data and NMR total water logs indicate very low water content, explaining the relatively low EC response. The NMR logs also indicate that the clay aquitard is partially saturated both from the top and the bottom. This suggests very low hydraulic conductivities for the aquitard resulting in negligible vertical leakage in these areas. This is supported by core permeameter measurements of less than 10-12 m/s.

  • The increasing availability of high-resolution digital elevation models (DEMs) is leading to improvements in flood analysis and predictions of surface-groundwater interaction in floodplain landscapes. To produce accurate predictions of flood inundation and calculations of flood volume, a 1m resolution LiDAR DEM was initially levelled to the Darling River floodplain by subtracting interpolated floodplain elevation trend surface from the DEM. This produces a de-trended flood-plain surface. Secondly, the levelled DEM surface was adjusted to the water-level reading at the Darling-River gauging station (Site 425012) at the time when the LiDAR was acquired. Flood extents were derived by elevation slicing of the adjusted levelled DEM up to any chosen river level. River-level readings from historical and current events utilised NSW Office of Water real-time river data. The flood-depth dataset is an inverted version of the flood-extent grid. Predicted flood depth and extent were classified by depth/elevation slice ranges of the adjusted de-trended DEM with 25 and 50 cm increments. In summary, the extent and depth of water inundation across the Darling floodplain have been predicted under different flooding scenarios, and validated using satellite data from historical (1990) and recent (2010/11) flood events. In all cases imagery and photo validation proved that predicted extents are accurate. The flood-risk predictions were then applied to a number of river-level scenarios. The flood risk predictions maps have been used as an input into developing recharge potential maps, and are being employed in flood-hazard assessments and infrastructure planning.

  • ACRES acquired SPOT 2 satellite images over the Namoi River, between the towns of Walgett and Wee Waa in December 1997 and November 2000. The November 2000 image consists of 12 scenes in which floodwaters, peaking at 8 metres, inundating the region are visible as green and light blue. Extensive flooding is evident. The December 1997 image shows the area of the Namoi River without floodwaters. The Namoi River catchment area is more than 350 kilometres long and stretches from Walcha in the east to Walgett in the west. Other river systems in the region include the Gwydir, Castlereagh, Hunter, Macquarie, Macleay, Manning, Culgoa and Condamine. You can find these rivers on Geoscience Australia's interactive Map of Australia.

  • The map shows the spatial distribution of short-duration rapid-onset floods and long-duration slow-rise floods. The Great Dividing Range in eastern Australia provides a natural separation of slower, wider rivers flowing west from faster, narrower coastal rivers flowing east.

  • The Risk Research Group at Geoscience Australia (GA) in Canberra is a multidisciplinary team engaged in the development of risk models for a range of natural hazards that are applicable to Australian urban areas. The Group includes hazard experts, numerical modellers, engineers, economists, and a specialist researching social vulnerability. The risk posed by riverine flooding to residential buildings is an important component of the work undertaken by the Group and is the focus of this paper. In 1975 researcher Richard Black published a report titled Flood Proofing Rural Residences as part of a multidisciplinary investigation of flood risk management in the USA. Black's research produced a number of curves describing combinations of water depth and velocity theoretically required to move a flooded house from its foundations. These so-called 'Black's Curves' have been referenced by numerous researchers worldwide since their publication. The houses used in Black's study are small by modern standards, and construction materials used in Australia can differ from those used in Black's research.

  • Geoscience Australia, the Western Australian Department of Planning and the Western Australian Planning Commission have collaborated through this study to develop a regional-scale inundation model capable of simulating combined storm tide and riverine flood scenarios within current and future climate conditions (sea-level rise influences only). Modelling scenarios were applied to the Busselton region of Western Australia.