2010
Type of resources
Keywords
Publication year
Scale
Topics
-
To follow
-
These datasets cover all of Brisbane City and are part of the 2009 South East Queensland LiDAR capture project. This project, undertaken by AAM Hatch Pty Ltd on behalf of the Queensland Government captured highly accurate elevation data using LiDAR technology. Available dataset formats (in 1 kilometre tiles) are: - Classified las (LiDAR Data Exchange Format where strikes are classified as ground, non-ground or building) - 1 metre Digital Elevation Model (DEM) in ASCII xyz - 1 metre Digital Elevation Model (DEM) in ESRI ASCII grid - 1 metre Digital Elevation Model (DEM) in ESRI binary grid - 1 metre Digital Elevation Model (DEM) mosaic in ESRI binary grid - 0.25 metre contours in ESRI Shape - 2 metre Hydrologically enforced Digital Elevation Model (HDEM) mosaic in ESRI binary grid
-
We have used data recorded by a temporary seismograph deployment to infer constraints on the state of crustal stress in the Flinders Ranges in south-central Australia. Previous stress estimates for the region have been poorly constrained due to the lack of large events and limited station coverage for focal mechanisms. New data allowed 65 events with 544 first motions to be used in a stress inversion to estimate the principal stress directions and stress ratio.While our initial inversion suggested that stress in the region was not homogeneous, we found that discarding data for events in the top 2km of the crust resulted in a well-constrained stress orientation that is consistent with the assumption of homogeneous stress throughout the Flinders Ranges. We speculate that the need to screen out shallow events may be due to the presence in the shallow crust of either: (1) small-scale velocity heterogeneity that would bias the ray parameter estimates, or (2) heterogeneity in the stress field itself, possibly due to the influence of the relatively pronounced topographic relief. The stress derived from earthquakes in the Flinders Ranges show an oblique reverse faulting stress regime, which contrasts with the pure thrust and pure strike slip regimes suggested by earlier studies. However, the roughly E-W direction of maximum horizontal compressive stress we obtain supports the conclusion of virtually all previous studies that the Flinders Ranges are undergoing E-W compression due to orogenic events at the boundaries of the Australian and Indian Plates.
-
Deep sea environments occupy much of the sea floor, yet little is known about diversity patterns of biological assemblages from these environments. Physical mapping technologies and their availability are increasing rapidly. Sampling deep-sea biota over vast areas of the deep sea, however, is time consuming, difficult, and costly. Consequently, the growing need to manage and conserve marine resources, particularly deep sea areas that are sensitive to anthropogenic disturbance and change, is leading the promotion of physical data as surrogates to predict biological assemblages. However, few studies have directly examined the predictive ability of these surrogates. The physical environment and biological assemblages were surveyed for two adjacent areas - the western flank of Lord Howe Rise (LHR) and the Gifford Guyot - spanning combined water depths of 250 to 2,200 m depth on the northern part of the LHR, in the southern Pacific Ocean. Multibeam acoustic surveys were used to generate large-scale geomorphic classification maps that were superimposed over the study area. Forty two towed-video stations were deployed across the area capturing 32 hours of seabed video, 6,229 still photographs, that generated 3,413 seabed characterisations of physical and biological variables. In addition, sediment and biological samples were collected from 36 stations across the area. The northern Lord Howe Rise was characterised by diverse but sparsely distributed faunas for both the vast soft-sediment environments as well as the discrete rock outcrops. Substratum type and depth were the main variables correlated with benthic assemblage composition. Soft-sediments were characterised by low to moderate levels of bioturbation, while rocky outcrops supported diverse but sparse assemblages of suspension feeding invertebrates, such as cold water corals and sponges which in turn supported epifauna, dominated by ophiuroids and crinoids. While deep environments of the LHR flank .
-
This disc contains PDF scans of uranium-related reports held by GA from the Australian Atomic Energy Commission archives. These reports date mostly from the 70s, with some which are much older (as early as 1901) but none newer than the early 80s. The reports are a mix of exploration reports, geological and geographical maps, proposals, feasibility studies, estimations, reserve information, drill hole data and drill cross section files. These reports pertain to the Alligator Rivers uranium field within Pine Creek region, including the Jabiluka, Koongarra, Nabarlek and Ranger regions. It is one of four discs containing reports concerning uranium in the Northern Territory.
-
Improving techniques for mapping land surface composition at regional- to continental-scale is the next step in delivering the benefits of remote sensing technology to Australia. New methodologies and collaborative efforts have been made as part of a multi-agency project to facilitate uptake of these techniques. Calibration of ASTER data with HyMAP has been very promising, and following an program in Queensland, a mosaic has been made for the Gawler-Curnamona region in South Australia. These programs, undertaken by Geoscience Australia, CSIRO, and state and industry partners, aims to refine and standardise processing and to make them easily integrated with other datasets in a GIS.
-
The Australian continent is actively deforming at a range of scales in response to far-field stresses associated with plate margins, and buoyancy forces associated with mantle dynamics. On the smallest scale (101 km), fault-related deformation associated with far-field stress partitioning has modified surface topography at rates of up to ~100 m / Myr. This deformation is evidenced in the record of historical earthquakes, and in the pre-historic record in the landscape. Paleoseismological studies indicate that few places in Australia have experienced a maximum magnitude earthquake since European settlement, and that faults in most areas are capable of hosting potentially catastrophic earthquakes with magnitudes in excess of 7.0. New South Wales is well represented in terms of its pre-historic earthquake record. Seismogenic faulting in the last 5-10 million years is thought to be responsible for locally generating up to 200 m of the contemporary topographic relief of the Eastern Highlands. Faults west of Sydney belonging to the Lapstone Structural Complex, and faults beneath the greater Sydney region, have been demonstrated to be associated with infrequent damaging earthquakes. . Decisions relating to the siting and construction of the built environment should therefore be informed with knowledge of the local neotectonics.
-
Sedimentary rocks deposited between 2400 Ma and 1800 Ma are known to be preferentially enriched in gold (Goldfarb et al. 2001). The Paleoproterozoic Tanami and Pine Creek regions of northern Australia host one world-class gold deposit and many other gold deposits in anomalously iron-rich marine mudstones (Fig.1). New fluid-rock modelling at temperatures of 275C - 350C suggest a strong correlation between gold grade and iron-rich, fine-grained sedimentary rocks, such as those in northern Australia.
-
This map shows the boundary of the security regulated port for the purpose of the Maritime Transport & Office Security Act 2003. 1 Sheet (Colour) February 2010 Not for sale or public distribution Contact Manager LOSAMBA project, PMD
-
This map shows the boundary of the security regulated port for the purposes of the Maritime Transport & Office Security Act 2003. 2 Sheets (Colour) March 2010 Not for sale or public distribution. Contact Manager LOSAMBA project, PMD.