From 1 - 10 / 358
  • This service represents a combination of two data products, the DEM_SRTM_1Second dataset and the Australian_Bathymetry_Topography dataset. This service was created to support the CO2SAP (Co2 Storage application) Project to create a transect elevation graph within the application. This data is not available as a dataset for download as a Geoscience Australia product. The DEM_SRTM_1Second service represents the National Digital Elevation Model (DEM) 1 Second product derived from the National DEM SRTM 1 Second. The DEM represents ground surface topography, with vegetation features removed using an automatic process supported by several vegetation maps. eCat record 72759. The Australian_Bathymetry_Topography service describes the bathymetry dataset of the Australian Exclusive Economic Zone and beyond. Bathymetry data was compiled by Geoscience Australia from multibeam and single beam data (derived from multiple sources), Australian Hydrographic Service (AHS) Laser Airborne Depth Sounding (LADS) data, Royal Australian Navy (RAN) fairsheets, the General Bathymetric Chart of the Oceans (GEBCO) bathymetric model, the 2 arc minute ETOPO (Smith and Sandwell, 1997) and 1 arc minute ETOPO satellite derived bathymetry (Amante and Eakins, 2008). Topographic data (onshore data) is based on the revised Australian 0.0025dd topography grid (Geoscience Australia, 2008), the 0.0025dd New Zealand topography grid (Geographx, 2008) and the 90m SRTM DEM (Jarvis et al, 2008). eCat record 67703. IMPORTANT INFORMATION For data within this service that lays out of the Australian boundary the following needs to be considered. This grid is not suitable for use as an aid to navigation, or to replace any products produced by the Australian Hydrographic Service. Geoscience Australia produces the 0.0025dd bathymetric grid of Australia specifically to provide regional and local broad scale context for scientific and industry projects, and public education. The 0.0025dd grid size is, in many regions of this grid, far in excess of the optimal grid size for some of the input data used. On parts of the continental shelf it may be possible to produce grids at higher resolution, especially where LADS or multibeam surveys exist. However these surveys typically only cover small areas and hence do not warrant the production of a regional scale grid at less than 0.0025dd. There are a number of bathymetric datasets that have not been included in this grid for various reasons.

  • Interpretation of newly acquired seismic data in the northern Houtman Sub-basin (Perth Basin) suggests the region contains potential source rocks similar to those in the producing Abrolhos Sub-basin. The regionally extensive late Permian–Early Triassic Kockatea Shale has the potential to contain the oil-prone Hovea Member source interval. Large Permian syn-rift half-graben, up to 10 km thick, are likely to contain a range of gas prone source rocks. Further potential source rocks may be found in the Jurassic-Early Cretaceous succession, including the Cattamarra Coal Measures, Cadda shales and mixed sources within the Yarragadee Formation. This study investigates the possible maturity and charge history of these different source rocks. A regional pseudo-3D petroleum systems model is constructed using new seismic interpretations. Heat flow is modelled using crustal structure and possible basement composition determined from potential field modelling, and subsidence analysis is used to investigate lithospheric extension through time. The model is calibrated using temperature and maturity data from 9 wells in the Houtman and Abrolhos sub-basins. Source rock properties are assigned based on an extensive review of TOC, Rock Eval and kinetic data for the offshore northern Perth Basin. Petroleum systems analysis results show that Permian, Triassic and Early Jurassic source rocks may have generated large cumulative volumes of hydrocarbons across the northern Houtman Sub-basin, whilst Middle Jurassic‒Cretaceous sources remain largely immature. However the timing of hydrocarbon generation and expulsion with respect to trap formation and structural reactivation is critical for the successful development and preservation of hydrocarbon accumulations.

  • This poster shows earthquakes occurring in Australia in 2016 with a background of earthquake activity in Australia over the past 10 years. Also included are images produced as part of the analysis of the Petermann Ranges Earthquakes -, the offshore Bowen Earthquakes -, and the Norsemann Earthquakes Sequences. A yearly summary of earthquake occurrences in Australia as well as the top 10 Australian earthquakes in 2016 are presented.

  • This report provides background information about the Ginninderra controlled release Experiment 3 including a description of the environmental and weather conditions during the experiment, the groundwater levels and a brief description of all the monitoring techniques that were trialled during the experiment. The Ginninderra controlled release facility is designed to simulate CO2 leakage through a fault, with CO2 released from a horizontal well 2 m underground. Two previous subsurface CO2 release experiments have been conducted at this facility in early and late 2012, which have helped guide and develop the techniques that have been applied herein. The aim of the third Ginninderra controlled release experiment was to further the development of detection and quantification techniques, and investigate seasonal effects on gas migration. Particular focus was given to plant health as a diagnostic detection method, via physical, biochemical and hyperspectral changes in plant biomass in response to elevated CO2 in the shallow root zone. Release of CO2 began 8 October 2013 at 4:45 PM and stopped 17 December 2013 at 5:35 PM. The CO2 release rate during Experiment 3 was 144 kg/d CO2. Several monitoring and assessment techniques were trialled for their effectiveness to quantify and qualify the CO2 that was released. The methods are described in this report and include: - soil gas - eddy covariance - mobile surveys - Line CO2 concentrations - groundwater levels and chemistry - plant biochemistry - airborne hyperspectral - soil flux - electromagnetic (EM-31 and EM-38) - meteorology This report is a reference guide to describe the Ginninderra Experiment 3 details. Only methods are described in this report, with the results of the experiment published in conference papers and journal articles.

  • ORIGIN AND USE OF HELIUM IN AUSTRALIAN NATURAL GASES C. Boreham1, D. Edwards1. R. Poreda2, P. Henson1. 1 Geoscience Australia, Canberra, Australia; 2 University of Rochester, NY, USA Over 800 natural gases representative of Australia's hydrocarbon-producing sedimentary basins have been analyzed for their helium (He) content and around 150 gases for their helium isotopic composition, supplemented by isotopic compositions of the higher noble gases. Australian natural gases have helium abundances to over 10%, with the highest values in the Amadeus Basin, in central Australia, while 3He/4He ratios range from around 0.01 to 4.2 Ra (Figure 1). The onshore Gunnedah Basin of southeastern Australia and the offshore Bass and onshore/offshore Otway basins in southern Australia show the highest 3He/4He ratios, indicating a significant mantle contribution. Interestingly, the offshore Gippsland Basin, adjacent to the Bass Basin, has slightly lower 3He/4He ratios. In the Gunnedah Basin, the associated CO2 has a relatively low abundance compared to extreme concentrations of CO2 in some Otway Basin wells, which are associated with recent volcanism. The onshore Bowen and Cooper basins of eastern Australia, where natural gases are predominately sourced from Permian coals, show intermediate 3He/4He ratios with the former having a higher mantle contribution. At the other end of the spectrum, low 3He/4He ratios characterize natural gases of the offshore North West Shelf (Bonaparte, Browse, Carnarvon) and onshore/offshore Perth basins in northwestern and southwestern Australia, respectively, and radiogenic helium predominates. Hence the sometimes extensive volcanic activity and igneous intrusions in these western basins is not expressed in the helium isotopes. The accompanying high CO2 contents (up to 44%) of some of these North West Shelf gases, together with the carbon isotopic composition of CO2, infer an inorganic source most likely from the thermal decomposition of carbonates. The geochemical data suggest that the origin of helium in Australian natural gas accumulations is region specific and complex with the component gases originating from multiple sources. The relative low CO2/3He ratio for many natural gases indicates a systematic loss of CO2 from most basins. The process by which CO2 has been lost from the system is most likely associated with precipitation of carbonates (Prinzhofer, 2013). The age of the source (and/or reservoir) rock has a primary control on the helium content with radiogenic 4He input increasing with residence time (Figure 1). References: Prinzhofer, A., 2013. Noble gases in oil and gas accumulations. The Noble Gases as Geochemical Tracers. Springer. 225-245.

  • The Antarctic field notebooks contain the geological observations recorded by Bureau of Mineral Resources geologists during their trips to Antarctica between 1948 – 1980s. Files include a scanned copy of the original handwritten field notebook, transcription of the notebook’s contents transcribed by volunteers and validated by an experienced geologist, and a csv file of the transcription with Text Encoding Initiative (TEI) tags. The original Antarctic field notebooks are held at the N.H. (Doc) Fisher Geoscience Library at Geoscience Australia, Canberra.

  • The Antarctic field notebooks contain the geological observations recorded by Bureau of Mineral Resources geologists during their trips to Antarctica between 1948 – 1980s. Files include a scanned copy of the original handwritten field notebook, transcription of the notebook’s contents transcribed by volunteers and validated by an experienced geologist, and a csv file of the transcription with Text Encoding Initiative (TEI) tags. The original Antarctic field notebooks are held at the N.H. (Doc) Fisher Geoscience Library at Geoscience Australia, Canberra.

  • The Antarctic field notebooks contain the geological observations recorded by Bureau of Mineral Resources geologists during their trips to Antarctica between 1948 – 1980s. Files include a scanned copy of the original handwritten field notebook, transcription of the notebook’s contents transcribed by volunteers and validated by an experienced geologist, and a csv file of the transcription with Text Encoding Initiative (TEI) tags. The original Antarctic field notebooks are held at the N.H. (Doc) Fisher Geoscience Library at Geoscience Australia, Canberra.

  • The Antarctic field notebooks contain the geological observations recorded by Bureau of Mineral Resources geologists during their trips to Antarctica between 1948 – 1980s. Files include a scanned copy of the original handwritten field notebook, transcription of the notebook’s contents transcribed by volunteers and validated by an experienced geologist, and a csv file of the transcription with Text Encoding Initiative (TEI) tags. The original Antarctic field notebooks are held at the N.H. (Doc) Fisher Geoscience Library at Geoscience Australia, Canberra.

  • The Antarctic field notebooks contain the geological observations recorded by Bureau of Mineral Resources geologists during their trips to Antarctica between 1948 – 1980s. Files include a scanned copy of the original handwritten field notebook, transcription of the notebook’s contents transcribed by volunteers and validated by an experienced geologist, and a csv file of the transcription with Text Encoding Initiative (TEI) tags. The original Antarctic field notebooks are held at the N.H. (Doc) Fisher Geoscience Library at Geoscience Australia, Canberra.