risk assessment
Type of resources
Keywords
Publication year
Scale
Topics
-
Cliff Head is the only producing oil field in the offshore Perth Basin. The lack of other exploration success has lead to a perception that the primary source rock onshore (Triassic Kockatea Shale) is absent or has limited generative potential. However, recent offshore well studies show the unit is present and oil prone. Multiple palaeo-oil columns were identified within Permian reservoir below the Kockatea Shale regional seal. This prompted a trap integrity study into fault reactivation as a critical risk for hydrocarbon preservation. Breach of accumulations could be attributed to mid Jurassic extension, Valanginian breakup, margin tilt or Miocene structuring. The study focused on four prospects, covered by 3D seismic data, containing breached and preserved oil columns. 3D geomechanical modelling simulated the response of trap-bounding faults and fluid flow to mid Jurassic-Early Cretaceous NW-SE extension. Calibration of modelling results against fluid inclusion data, as well as current and palaeo-oil columns, demonstrates that along-fault fluid flow correlates with areas of high shear and volumetric strains. Localisation of deformation leads to both an increase in structural permeability promoting fluid flow, and the development of hard-linkages between reactivated Permian reservoir faults and Jurassic faults producing top seal bypass. The main structural factors controlling the distribution of permeable fault segments are: (i) failure for fault strikes 350??110?N; (ii) fault plane intersections generating high shear deformation and dilation; and (iii) preferential reactivation of larger faults shielding neighbouring structures. These results point to a regional predictive approach for assessing trap integrity in the offshore Perth Basin.
-
The term "Smartline" refers to a GIS line map format which can allow rapid capture of diverse coastal data into a single consistently classified map, which in turn can be readily analysed for many purposes. This format has been used to create a detailed nationally-consistent coastal geomorphic map of Australia, which is currently being used for the National Coastal Vulnerability Assessment (NCVA) as part of the underpinning information for understanding the vulnerability to sea level rise and other climate change influenced hazards such as storm surge. The utility of the Smartline format results from application of a number of key principles. A hierarchical form- and fabric-based (rather than morpho-dynamic) geomorphic classification is used to classify coastal landforms in shore-parallel tidal zones relating to but not necessarily co-incident with the GIS line itself. Together with the use of broad but geomorphically-meaningful classes, this allows Smartline to readily import coastal data from a diversity of differently-classified prior sources into one consistent map. The resulting map can be as spatially detailed as the available data sources allow, and can be used in at least two key ways: Firstly, Smartline can work as a source of consistently classified information which has been distilled out of a diversity of data sources and presented in a simple format from which required information can be rapidly extracted using queries. Given the practical difficulty many coastal planners and managers face in accessing and using the vast amount of primary coastal data now available in Australia, Smartline can provide the means to assimilate and synthesise all this data into more usable forms.
-
Climate change is expected to increase severe wind hazard in many regions of the Australian continent with consequences for exposed infrastructure and human populations. The objective of this paper is to provide an initial nationally consistent assessment of wind risk under current cli-mate (residential buildings only), utilizing the Australian/New Zealand wind loading standard (AS/NZS 1170.2, 2002) as the measure of the hazard. This work is part of the National Wind Risk Assessment (NWRA), a collaboration between the Department of Climate Change and En-ergy Efficiency and Geoscience Australia (both Federal Government Agencies). It is aimed at highlighting regions of the Australian continent where currently there is high wind risk to resi-dential structures (current climate), and where, if hazard increases under climate change, there will be a greater need for adaptation. This assessment was undertaken by separately considering wind hazard, infrastructure ex-posure and the wind vulnerability of residential buildings. The methodology has determined the direct impact of severe wind on Australian communities, which has involved the parallel devel-opment of the understanding of wind hazard, residential building exposure and the wind vulner-ability of residential structures. We provide a map of the current climate wind risk for residential housing, expressed as annualized loss based on the wind loading standard as a proxy for the wind hazard. We also explore issues with the nationally consistent methodology through a validation process that considers a 'buildings level' assessment for four case-study regions utilizing an im-proved understanding of building vulnerability with respect to severe wind hazard.
-
The seismicity of the Australian continent is low to moderate by world standards. However, the seismic risk is much higher for some types of Australian infrastructure due to an incompatibility of structural vulnerability with local earthquake hazard. The earthquake risk in many regional neighbours is even higher due to high hazard, community exposure and vulnerability. The Risk and Impact Analysis Group is a multidisciplinary team at Geoscience Australia that is actively engaged in research to better understand earthquake risk in Australia and to assist agencies in neighbouring countries develop similar knowledge. In this presentation aspects of this work will be described with a particular focus on engineering vulnerability, post disaster information capture and how both can point to effective mitigation options. Risk is the combination of several components (hazard, exposure, vulnerability and impact) that combine to provide measures that can be very useful for decision makers. Vulnerability is the key link that translates hazard exposure to consequence. Vulnerability is typically expressed in physical terms but includes interdependent utility system vulnerability, economic activity vulnerability and the social vulnerability of communities. All four vulnerability types have been the subject of research at GA but the physical vulnerability is the primary link to the others. Vulnerability research for Australian infrastructure will be presented in the context of a holistic risk framework. Furthermore, the work in the Philippines to develop a first order national suite of models will also be presented. Post disaster survey data is invaluable for understanding the nature of asset vulnerability, developing empirical models and validating analytical models based on structural models. Geoscience Australia has developed a range of tools to assist with damage capture that have been used for several hazard types, including earthquake. Tools include portable street view imagery capture, GPS technology and hand-held computers. Experience with the application of these tools and the information that has been derived will be described along with current activity to improve their utility.
-
The Australian National Coastal Vulnerability Assessment (NCVA) was commissioned by the Federal Government to assess the risk to coastal communities from climate related hazards. In addition to an understanding of the impact/risk posed by the current climate, the study also examined the change in risk under a range of future climate scenarios. This assessment will provide information for application to policy decisions for, inter alia, land use, building codes, emergency management and insurance applications. Geoscience Australia coordinated the work undertaken to quantify the impact on property and infrastructure. This included the development of SMARTLINE, a nationally-consistent database of coastal morphology for the entire country, which provides critical information on the geology and landforms and their potential susceptibility to instability or degradation due to environmental or climatic factors. In a first-order attempt to assess the climate-change induced hazard to the coastal landscape, SMARTLINE data have been combined with sea-level rise (SLR) projections for 2030 and 2100, and 1 in 100 year current-climate storm surge estimates to determine potential areas of inundation and zones of instability where coastal recession due to SLR is predicted. Additionally, cyclonic wind hazard along Australia's northern coastline has been estimated using Geoscience Australia's Tropical Cyclone Risk Model, utilising synthetic tropical cyclone event sets derived from IPCC AR4 global climate models. The hazard levels have been modified for terrain, topographic and shielding effects to reflect localised variations in wind hazard.
-
Some of the most visible consequences arising from climate change are sea level rise and more intense and frequent storms. On the open coast and low lying estuarine waterways these impacts will lead to the increased risks of inundation, storm surge and coastal erosion that can damage beaches, property and infrastructure and impact on a significant number of people. Understanding the potential risk of these coastal hazards is critical for coastal zone management and the formulation of adaptation responses, while early action is likely to be the most cost effective approach to managing the risk. Geoscience Australia (GA) is assisting the Australian Government's Department of Climate Change to develop a 'first pass' National Coastal Vulnerability Assessment. GA and the University of Tasmania (UTas) are developing fundamental spatial datasets and GIS modelling tools to identify which land areas of the Australian coast are likely to be physically sensitive to the effects of sea level rise, storms and storm surge. Of special interest is to identify sensitive areas where there is significant property and infrastructure that will be the focus of a more detailed study in a second pass assessment. A new national shoreline geomorphic and stability map or Smartline, developed for the project by UTas, is a key new spatial dataset. The Smartline is an interactive, nationally-consistent coastal GIS map in the form of a segmented line. Each line segment identifies distinct coastal landform types using multiple attribute fields to describe important aspects of the geology, geomorphology and topography of the coast. These data enable an assessment of the stability of the coast and its sensitivity to the potential impacts of shoreline erosion (soft coast) and inundation (low-lying coast), providing a useful indicative coastal risk assessment.
-
This framework is a reference for individuals and agencies involved in bushfire risk assessment in Australia who seek to improve information on bushfire risk from quantitative methods compared to qualitative methods. It is aimed at bushfire researchers and risk managers in fire, planning and related agencies. Computational bushfire risk assessment is in an early stage of development in Australia. It is an opportune time to establish a framework sufficiently broad that it will accommodate pre-existing and new methods to assess bushfire risk while encouraging innovation. Current methods for assessing bushfire risk in Australia use different terminologies and approaches, and application of an overarching framework improves the potential to compare methods and confidence in comparing results between studies.
-
A study of the consistency of gust wind speed records from two types of recording instruments has been undertaken. The study examined the Bureau of Meteorology's (BoM) wind speed records in order to establish the existence of bias between coincident records obtained by the old pressure-tube Dines anemometers and the records obtained by the new cup anemometers. This study was an important step towards assessing the quality and consistency of gust wind speed records that form the basis of the Australian Standards/NZ Standards for design of buildings for wind actions (AS/NZS 1170.2:2011 and AS 4055:2006). The Building Code of Australia (BCA) requires that buildings in Australia meet the specifications described in the two standards. BoM has been recording peak gust wind speed observations in the Australian region for over 70 years. The Australia/New Zealand Wind Actions Standard as well as the wind engineering community in general rely on these peak gust wind speed observations to determine wind loads on buildings and infrastructure. In the mid-1980s BoM commenced a program to replace the aging Dines anemometers with Synchrotac and Almos cup anemometers. During the anemometer replacement procedure, many localities had both types of anemometers recording extreme events. This allowed us to compare severe wind recordings of both instruments to assess the consistency of the recordings. The results show that the Dines anemometer measures higher gust wind speeds than the 3-cup anemometer when the same wind gust is considered. The bias varies with the wind speed and ranges from 5 to 17%. This poster presents the methodology and main outcomes from the assessment of coincident measurements of gust wind speed.
-
Climate change is expected to increase severe wind hazard in many regions of the Australian continent with consequences for exposed infrastructure and human populations. The objective of this paper is to provide an initial nationally consistent assessment of wind risk under current climate, utilizing the Australian/New Zealand wind loading standard (AS/NZS 1170.2, 2002) as a measure of the hazard. This work is part of the National Wind Risk Assessment (NWRA), which is a collaboration between the Australian Federal Government (Department of Climate Change and Energy Efficiency) and Geoscience Australia. It is aimed at highlighting regions of the Australian continent where there is high wind risk to residential structures under current climate, and where, if hazard increases under climate change, there will be a greater need for adaptation. This assessment is being undertaken by separately considering wind hazard, infrastructure exposure and the wind vulnerability of residential buildings. The NWRA will provide a benchmark measure of wind risk nationally (current climate), underpinned by the National Exposure Information System (NEXIS; developed by Geoscience Australia) and the wind loading standard. The methodology which determines the direct impact of severe wind on Australian communities involves the parallel development of the understanding of wind hazard, residential building exposure and the wind vulnerability of residential structures. We provide the current climate wind risk, expressed as annualized loss, based on the wind loading standard.
-
Disaster management is most effective when it is based on evidence. Evidence-based disaster management means that decision makers are better informed, and the decision making process delivers more rational, credible and objective disaster management outcomes. To achieve this, fundamental data needs to be translated into information and knowledge, before it can be put to use by the decision makers as policy, planning and implementation. Disaster can come in all forms: rapid and destructive like earthquakes and tsunamis, or gradual and destructive like drought and climate change. Tactical and strategic responses need to be based on the appropriate information to minimise impacts on the community and promote subsequent recovery. This implies a comprehensive supply of information, in order to establish the direct and indirect losses, and to establish short and long term social and economic resilience. The development of the National Exposure Information System (NEXIS) is a significant national project being undertaken by Geoscience Australia (GA). NEXIS collects, collates, manages and provides the information required to assess multi-hazard impacts. Exposure information may be defined as a suite of information relevant to all those involved in a natural disaster, including the victims, the emergency services, and the policy and planning instrumentalities.