Organic Geochemistry
Type of resources
Keywords
Publication year
Service types
Topics
-
<b>Legacy service Retired 29/11/2022 IMPORTANT NOTICE: </b>This web service has been deprecated. The Australian Onshore and Offshore Boreholes OGC service at https://services.ga.gov.au/gis/boreholes/ows should now be used for accessing Geoscience Australia borehole data. This is an Open Geospatial Consortium (OGC) web service providing access to Australian onshore and offshore borehole data. This web service is intended to complement the borehole GeoSciML-Portrayal v4.0 web service, providing access to the data in a simple, non-standardised structure. The borehole data includes Mineral Drillholes, Petroleum Wells and Water Bores along with a variety of others types. The dataset has been restricted to onshore and offshore Australian boreholes, and bores that have the potential to support geological investigations and assessment of a variety of resources.
-
<div>Geoscience Australia’s Exploring for the Future (EFTF) program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The EFTF program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div>The onshore Canning Basin in Western Australia was the focus of a regional hydrocarbon prospectivity assessment undertaken by the EFTF program dedicated to increasing investment in resource exploration in northern Australia, with the objective being to acquire new data and information about the potential mineral, energy and groundwater resources concealed beneath the surface. As part of this program, significant work has been carried out to deliver pre-competitive data in the region including new seismic acquisition, drilling of a stratigraphic well, and geochemical analysis from historic exploration wells.</div><div>As part of this program, a compilation of the compound-specific isotopic compositions of crude oils from 30 petroleum wells in the Canning Basin have been completed. The samples were analysed in Geoscience Australia’s Isotope and Organic Geochemistry Laboratory and the collated results are released in this report. This report provides additional stable carbon and hydrogen isotopic data to build on the oil-oil correlations previously established by Edwards and Zumberge (2005) and Edwards et al. (2013). This information can be used in future geological programs to determine the origin of the crude oils, and hence increase our understanding of the Larapintine Petroleum Supersystem, as established by Bradshaw (1993) and Bradshaw et al. (1994).</div><div><br></div>
-
The Roebuck Basin on Australia’s offshore north-western margin is the focus of a regional hydrocarbon prospectivity assessment being undertaken by the Offshore Energy Systems Section. This offshore program is designed to produce pre-competitive information to assist with the evaluation of the hydrocarbon resource potential of the central North West Shelf and attract exploration investment to Australia. As part of this program, molecular and isotopic analyses were undertaken by Geoscience Australia on gas samples from the well Dorado 1 and the raw data from these analyses are released in this report.
-
The Australian Government’s $225 million Exploring for the Future (EFTF) program is committed to supporting a strong economy, resilient society and sustainable environment for the benefit of Australians (https://www.ga.gov.au/eftf). At its heart, the program is about stimulating industry now to ensure a sustainable, long-term future for Australia through an improved understanding of the nation’s minerals, energy and groundwater resource potential. By gathering and analysing geological and geophysical data and making the results publicly available, the program supports regional development and informed decision making across Australia, resulting in jobs and growth. The Energy component of this program is designed to produce pre-competitive information to assist with the evaluation of the hydrocarbon resource potential of onshore basins and attract exploration investment to Australia. As part of the EFTF Natural Hydrogen module, molecular and isotopic analyses were undertaken by Geoscience Australia on natural gas samples from the wells Canunda 2 and Ralgnal 1 from the southwestern margin of the Patchawarra Trough in the Cooper Basin, with the raw data from these analyses being released in this report. Some data from these wells were included in the nationwide studies of helium and hydrogen, as published by Boreham et al. (2018; 2021), and build on previous studies that document the composition of Australian natural gases (Boreham et al., 2001). These data are available through the Geoscience Australia portal at https://portal.ga.gov.au/
-
Although the Canning Basin has yielded minor gas and oil within conventional and unconventional reservoirs, the relatively limited geological data available in this under-explored basin hinder a thorough assessment of its hydrocarbon potential. Knowledge of the Paleozoic Larapintine Petroleum Supersystem is restricted by the scarcity of samples, especially recovered natural gases, which are limited to those collected from recent exploration successes in Ordovician and Permo-Carboniferous successions along the margins of the Fitzroy Trough and Broome Platform. To address this shortcoming, gases trapped within fluid inclusions were analysed from 121 Ordovician to Permian rock samples (encompassing cores, sidewall cores and cuttings) from 70 exploration wells with elevated mud gas readings. The molecular and carbon isotopic compositions of these gases have been integrated with gas compositions derived from open-file sources and recovered gases analysed by Geoscience Australia. Fluid inclusion C1–C5 hydrocarbon gases record a snapshot of the hydrocarbon generation history. Where fluid inclusion gases and recovered gases show similar carbon isotopes, a simple filling history is likely; where they differ, a multicharge history is evident. Since some fluid inclusion gases fall outside the carbon isotopic range of recovered gases, previously unidentified gas systems may have operated in the Canning Basin. Interestingly, the carbon isotopes of the fluid-inclusion heavy wet gases converge with the carbon isotopes of the light oil liquids, indicating potential for gas–oil correlation. A regional geochemical database incorporating these analyses underpins our re-evaluation of gas systems and gas–gas correlations across the basin. <b>Citation:</b> Boreham, C.J., Edwards, D.S., Sohn, J.H., Palatty, P., Chen, J.H. and Mory, A.J., 2020. Gas systems in the onshore Canning Basin as revealed by gas trapped in fluid inclusions. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
<div>The Paleo- to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin straddling the Northern Territory and Western Australia and is a region of focus for the second phase of Geoscience Australia’s Exploring for the Future (EFTF) program (2020–2024). Hydrocarbon exploration in the Birrindudu Basin has been limited and a thorough assessment of the basin's petroleum potential is lacking due to the absence of data in the region. To fill this data gap, a comprehensive analytical program including organic petrology, programmed pyrolysis and oil fluid inclusion analysis was undertaken on cores from six drill holes to improve the understanding of the basin’s source rock potential and assess petroleum migration. Organic petrological analyses reveal that the primary maceral identified in the cores is alginite mainly originating from filamentous cyanobacteria, while bitumen is the most common unstructured secondary organic matter. New reflectance data based on alginite and bitumen reflectance indicate the sampled sections have reached a thermal maturity suitable for hydrocarbon generation. Oil inclusion analyses provide evidence for oil generation and migration, and hence elements of a petroleum system are present in the basin. Presented at the Australian Energy Producers (AEP) Conference & Exhibition (https://energyproducersconference.au/conference/)
-
<div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential.</div><div><br></div><div>The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood.</div><div><br></div><div>Geoscience Australia have undertaken (via the service provider, FIT, Schlumberger) Fluid Inclusion Petrography and Microthermometry analysis of samples for the drillhole 99VRNTGSDD1, Birrindudu Basin, located in the northwest Northern Territory (Company reference number MT#F1230005c).</div><div><br></div><div>This eCat Record accompanies the report containing the results of fluid inclusion stratigraphy on this drillhole (eCat record 148973).</div>
-
<div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential.</div><div><br></div><div>The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood.</div><div><br></div><div>Geoscience Australia have undertaken (via the service provider, FIT, Schlumberger) Fluid Inclusion Petrography and Microthermometry analysis of samples for the drillhole LBD2, Birrindudu Basin, located in the northwest Northern Territory (Company reference number MT#F1230005a).</div><div><br></div><div>This eCat Record accompanies the report containing the results of fluid inclusion stratigraphy on this drillhole (eCat record 148975)</div>
-
<div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential.</div><div><br></div><div>The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood.</div><div><br></div><div>Geoscience Australia have undertaken (via the service provider, FIT, Schlumberger) Fluid Inclusion Petrography and Microthermometry analysis of samples for the drillhole WLMB001B, Birrindudu Basin, located in the northwest Northern Territory (Company reference number MT#FI230004a).</div><div><br></div><div>This eCat Record accompanies the report containing the results of fluid inclusion stratigraphy on this drillhole (eCat record 149178)</div>
-
<div>Exploring for the Future (EFTF) is an Australian Government program led by Geoscience Australia, in partnership with state and Northern Territory governments, and aimed at stimulating exploration now to ensure a sustainable, long-term future for Australia through an improved understanding of the nation’s minerals, energy and groundwater resource potential. </div><div>The EFTF program is currently focused on eight interrelated projects, united in growing our understanding of subsurface geology. One of these projects, the Barkly–Isa–Georgetown project, will deliver new data and knowledge to assess the mineral and energy potential in undercover regions between Tennant Creek, Mount Isa and Georgetown. Building on the work completed in the first four years of the Exploring for the Future program (2016-2020), the project undertook stratigraphic drilling in the East Tennant and South Nicholson regions, in collaboration with MinEx CRC and the Northern Territory Geological Survey (NTGS). This work tests geological interpretations and the inferred mineral and energy potential of these covered regions. Geoscience Australia is undertaking a range of analyses on physical samples from these drill holes including geochemistry and geochronology. </div><div>The South Nicholson National Drilling Initiative (NDI) Carrara 1 drill hole is the first drillhole to intersect the Proterozoic rocks of the Carrara Sub-Basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys acquired as part of the EFTF. It is located on the western flanks of the Carrara Sub-basin on the South Nicholson Seismic line 17GA-SN1, reaching a total depth of 1751 m, intersecting ca. 630 m of Cambrian Georgina Basin overlying ca. 1100 m of Proterozoic carbonates, black shales and minor siliciclastics.</div><div>The NDI BK10 drill hole is the tenth drill hole drilled as part of the East Tennant project aimed to constrain the East Tennant basement geology and calibrate predictive mineral potential maps to further our understanding of the prospectivity of this region. NDI BK10 reached a depth of 766 m and intersected basement at 734 m. Overlying these basement metasediments of the Alroy Formation, the drillhole intersected about 440 m of Proterozoic rocks underlain by ca. 300 m rocks of Cambrian age from the Georgina Basin.</div><div>During coring of NDI Carrara 1 and NDI BK10, cores containing oil stains were identified and sent for geochemical analysis to Geoscience Australia. This report presents the geochemical data from these oil stains including biomarker and isotopic data.</div>