From 1 - 10 / 124
  • Geochemical tracers have been used for many years to improve the understanding of reservoir dynamics in geothermal systems. Tracers can be classified as either conservative or reactive, and can be used in liquid-phase, vapour-phase or two-phase reservoirs at temperatures of 300C or more. They are commonly used to map flow pathways between injection and production wells in a geothermal field, to monitor the effects of reinjection and identify wells that might experience premature thermal breakthrough if left unmanaged. Tracer tests also provide information about reservoir fluid residence time, fluid recharge location or direction, swept pore volumes, inter-well connectivity, temperatures, fracture surface area, flow-storage capacity relationships and volumetric fluid sweep efficiencies. In addition, tracer data can be used with numerical transport codes to help validate 2D or 3D reservoir models. Thus, tracer tests can provide powerful insight into geothermal reservoir characteristics, and they can be performed at many stages of project development, from small-scale demonstration projects (e.g. an injection-production well doublet) through to large-scale commercial fields (e.g. Wairakei, New Zealand). New 'smart' tracers have the potential to be used with a single well to evaluate changes in fracture surface area following reservoir stimulation, and thus have applications to both conventional and unconventional (engineered) geothermal projects.

  • Regolith carbonate or secondary carbonate is a key component of the regolith, particularly in many Mediterranean, arid and semi-arid regions of Australia. National maps of regolith carbonate distribution have been compiled from regional soil, regolith and geological mapping with varying degrees of confidence and consistency. Here we apply a decision tree approach based on a piecewise linear regression model to estimate and map the near-surface regolith carbonate concentration at the continental scale. The model is based on relationships established from the 1311 field sites of the National Geochemical Survey of Australia (NGSA) and 49 national environmental covariate datasets. Regolith carbonate concentration (weight %) was averaged from the <2 mm grain size-fractions of samples taken from two depth ranges (0-10 cm and ~60-80 cm) at each NGSA site. The final model is based on the average of 20 runs generated by randomly selecting 90% training and 10% validation splits of the input data. Results present an average coefficient of determination (R2) of 0.56 on the validation dataset. The covariates used in the prediction are consistent with our understanding of the controls on the sources (inputs), preservation and distribution of regolith carbonate within the Australian landscape. The model produces a continuous, quantitative prediction of regolith carbonate abundance in surficial regolith at a resolution of 90 m with associated estimates of model uncertainty. The model-derived map is broadly consistent with our current knowledge of the distribution of carbonate-rich soil and regolith in Australia. This methodology allows the rapid generation of an internally consistent and continuous layer of geoinformation that may be applicable to other carbonate-rich landscapes globally. The methodology used in this study has the potential to be used in predicting other geochemical constituents of the regolith.

  • The Walloon Coal Measures (WCM) in the Clarence-Moreton and the Surat basins in Qld and northern NSW contain up to approximately 600 m of mudstone, siltstone, sandstone and coal. Wide-spread exploration for coal seam gas (CSG) within both basins has led to concerns that the depressurisation associated with the resource development may impact on water resources in adjacent aquifers. In order to predict potential impacts, a detailed understanding of sedimentary basins hydrodynamics that integrates geology, hydrochemistry and environmental tracers is important. In this study, we show how different hydrochemical parameters and isotopic tracers (i.e. major ion chemistry, dissolved gas concentrations, 13C-DIC, 18O, 87Sr/86Sr, 3H, 14C, 2H and 13C of CH4) can help to improve the knowledge on groundwater recharge and flow patterns within the coal-bearing strata and their connectivity with over- or underlying formations. Dissolved methane concentrations in groundwaters of the WCM in the Clarence-Moreton Basin range from below the reporting limit (10 µg/L) to approximately 50 mg/L, and samples collected from nested bore sites show that there is also a high degree of vertical variability. Other parameters such as groundwater age measurements collected along distinct flow paths are also highly variable. In contrast, 87Sr/86Sr isotope ratios of WCM groundwaters are very uniform and distinct from groundwaters contained in other sedimentary bedrock units, suggesting that 87Sr/86Sr ratios may be a suitable tracer to study hydraulic connectivity of the Walloon Coal Measures with over- or underlying aquifers, although more studies on the systematic are required. Overall, the complexity of recharge processes, aquifer connectivity and within-formation variability confirms that a single tracer that cannot provide all information necessary to understand aquifer connectivity in these sedimentary basins, but that a multi-tracer approach is required.

  • This web map service provides visualisations of the datasets used as inputs into the analysis of potential for tholeiitic intrusion-hosted Ni-Cu-PGE sulfide deposits in Australia, and the resulting outputs. The datasets included in this service cover the four mineral system components incorporated in the conceptual model for the formation of tholeiitic intrusion-hosted Ni-Cu-PGE sulfide deposits : (1) energy sources or drivers of the ore-forming system; (2) crustal and mantle lithospheric architecture; (3) sources of ore constituents (i.e., Ni, PGE, Cu, S in magmatic systems); and (4) gradients in ore depositional physico-chemical parameters. The results of the analysis are published in the report "Potential for intrusion-hosted Ni-Cu-PGE sulfide deposits in Australia: A continental-scale analysis of mineral system prospectivity. http://dx.doi.org/10.11636/Record.2016.001".

  • This resource contains a predicted 13C isotope standard error grid for the greater Darwin Harbour region as part of a baseline seabed mapping program of Darwin Harbour and Bynoe Harbour. This project was funded through offset funds provided by an INPEX-led Ichthys LNG Project to the Northern Territory Government’s Department of Environment and Natural Resources (NTG-DENR) with co-investment from Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS). The intent of this program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps and information to underpin marine resource management decisions. The predicted 13C isotope standard error grid was derived from a compilation of multiple surveys undertaken by GA, AIMS and NTG-DENR between 2011 and 2017, including GA0333 (Siwabessy et al., 2015), GA0341 (Siwabessy et al., 2015), GA0351/SOL6187 (Siwabessy et al., 2016), GA4452/SOL6432 (Siwabessy et al., 2017), GA0356 (Radke et al., 2017), and GA0358 and GA0359 (Radke et al., 2018), adding to those from previous surveys GA4425 and GA0333 collected by GA, AIMS, NTG-DENR and Darwin Port Authority.

  • This resource contains a predicted chlorin index grid for the greater Darwin Harbour region as part of a baseline seabed mapping program of Darwin Harbour and Bynoe Harbour. This project was funded through offset funds provided by an INPEX-led Ichthys LNG Project to the Northern Territory Government’s Department of Environment and Natural Resources (NTG-DENR) with co-investment from Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS). The intent of this program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps and information to underpin marine resource management decisions. The predicted chlorin index grid was derived from a compilation of multiple surveys undertaken by GA, AIMS and NTG-DENR between 2011 and 2017, including GA0333 (Siwabessy et al., 2015), GA0341 (Siwabessy et al., 2015), GA0351/SOL6187 (Siwabessy et al., 2016), GA4452/SOL6432 (Siwabessy et al., 2017), GA0356 (Radke et al., 2017), and GA0358 and GA0359 (Radke et al., 2018), adding to those from previous surveys GA4425 and GA0333 collected by GA, AIMS, NTG-DENR and Darwin Port Authority.

  • This resource contains a predicted total organic carbon grid for the greater Darwin Harbour region as part of a baseline seabed mapping program of Darwin Harbour and Bynoe Harbour. This project was funded through offset funds provided by an INPEX-led Ichthys LNG Project to the Northern Territory Government’s Department of Environment and Natural Resources (NTG-DENR) with co-investment from Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS). The intent of this program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps and information to underpin marine resource management decisions. The predicted total organic carbon grid was derived from a compilation of multiple surveys undertaken by GA, AIMS and NTG-DENR between 2011 and 2017, including GA0333 (Siwabessy et al., 2015), GA0341 (Siwabessy et al., 2015), GA0351/SOL6187 (Siwabessy et al., 2016), GA4452/SOL6432 (Siwabessy et al., 2017), GA0356 (Radke et al., 2017), and GA0358 and GA0359 (Radke et al., 2018), adding to those from previous surveys GA4425 and GA0333 collected by GA, AIMS, NTG-DENR and Darwin Port Authority.

  • This resource contains a predicted calcium carbonate content standard error grid for the greater Darwin Harbour region as part of a baseline seabed mapping program of Darwin Harbour and Bynoe Harbour. This project was funded through offset funds provided by an INPEX-led Ichthys LNG Project to the Northern Territory Government’s Department of Environment and Natural Resources (NTG-DENR) with co-investment from Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS). The intent of this program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps and information to underpin marine resource management decisions. The predicted calcium carbonate content standard error grid was derived from a compilation of multiple surveys undertaken by GA, AIMS and NTG-DENR between 2011 and 2017, including GA0333 (Siwabessy et al., 2015), GA0341 (Siwabessy et al., 2015), GA0351/SOL6187 (Siwabessy et al., 2016), GA4452/SOL6432 (Siwabessy et al., 2017), GA0356 (Radke et al., 2017), and GA0358 and GA0359 (Radke et al., 2018), adding to those from previous surveys GA4425 and GA0333 collected by GA, AIMS, NTG-DENR and Darwin Port Authority.

  • This resource contains a predicted chlorin index standard error grid for the greater Darwin Harbour region as part of a baseline seabed mapping program of Darwin Harbour and Bynoe Harbour. This project was funded through offset funds provided by an INPEX-led Ichthys LNG Project to the Northern Territory Government’s Department of Environment and Natural Resources (NTG-DENR) with co-investment from Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS). The intent of this program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps and information to underpin marine resource management decisions. The predicted chlorin index standard error grid was derived from a compilation of multiple surveys undertaken by GA, AIMS and NTG-DENR between 2011 and 2017, including GA0333 (Siwabessy et al., 2015), GA0341 (Siwabessy et al., 2015), GA0351/SOL6187 (Siwabessy et al., 2016), GA4452/SOL6432 (Siwabessy et al., 2017), GA0356 (Radke et al., 2017), and GA0358 and GA0359 (Radke et al., 2018), adding to those from previous surveys GA4425 and GA0333 collected by GA, AIMS, NTG-DENR and Darwin Port Authority.

  • This resource contains a predicted carbon – nitrogen ratio grid for the greater Darwin Harbour region as part of a baseline seabed mapping program of Darwin Harbour and Bynoe Harbour. This project was funded through offset funds provided by an INPEX-led Ichthys LNG Project to the Northern Territory Government’s Department of Environment and Natural Resources (NTG-DENR) with co-investment from Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS). The intent of this program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps and information to underpin marine resource management decisions. The predicted carbon – nitrogen ratio grid was derived from a compilation of multiple surveys undertaken by GA, AIMS and NTG-DENR between 2011 and 2017, including GA0333 (Siwabessy et al., 2015), GA0341 (Siwabessy et al., 2015), GA0351/SOL6187 (Siwabessy et al., 2016), GA4452/SOL6432 (Siwabessy et al., 2017), GA0356 (Radke et al., 2017), and GA0358 and GA0359 (Radke et al., 2018), adding to those from previous surveys GA4425 and GA0333 collected by GA, AIMS, NTG-DENR and Darwin Port Authority.