From 1 - 10 / 109
  • These preliminary notes deal with the sequence as it is found in the Giralia Structure. The analysis of the Cretaceous-Tertiary megafauna is described. The findings of the investigation with respect to the sedimentary sequence are discussed.

  • This glossary gives a brief description of the more important sedimentary rocks. Composition percentages are tentative in nearly all cases. The terms listed are classified as follows.

  • Increased loads of land-based pollutants associated with land use change are a major threat to coastal-marine ecosystems globally. Identifying the affected areas and the scale of influence on marine ecosystems is critical to assess the ecological impacts of degraded water quality and to inform planning for catchment management and marine conservation. Studies using remotely-sensed data have contributed to our understanding of the occurrence and extent of influence of river plumes, as well as to assess exposure of ecosystems to river-borne pollutants. However, refinement of plume modelling techniques is required to improve risk assessments. We developed a novel approach to model exposure of coastal-marine ecosystems to river-borne pollutants. The model is based on supervised classification of true-colour satellite imagery to map the extent of plumes and to qualitatively assess the dispersal of pollutants in plumes. We use the Great Barrier Reef (GBR) to test our approach. We combined frequency of plume occurrence with spatially-distributed loads (based on a cost-distance function) to create maps of exposure to suspended sediment and dissolved inorganic nitrogen. We then compared annual exposure maps (2007-2011) to assess inter-annual variability in the exposure of coral reefs and seagrass beds. Our findings indicate that classification of true colour satellite images is useful to map plumes and to qualitatively assess exposure to river-borne pollutants. This approach should be considered complementary to remote sensing methods based on ocean colour products used to characterise surface water in plumes. The proposed exposure model is useful to study the spatial and temporal variation in exposure of coastal-marine ecosystems to riverine plumes. Observed inter-annual variation in exposure of habitats to pollutants stresses the need to incorporate the temporal component in exposure and risk models.

  • In this study of the beach-ridge plain at Keppel Bay, on the central coast of Queensland, we examine ridge morphology, sediment texture and geochemistry. We build a detailed chronology for the ridge succession using the optically stimulated luminescence (OSL) dating method. Although our interpretations are preliminary, our results suggest that significant changes have occurred in the rate of shoreline accumulation of sediment, catchment sediment source areas, and that there have been minor falls in relative sea level.

  • A high resolution sequence stratigraphic study has been undertaken on the three wells in the Houtman Sub-basin, offshore North Perth Basin: Gun Island 1 (1968), Houtman 1 (1978) and Charon 1 (2008). The study focussed on the late Jurassic Yarragadee Formation, mid Jurassic Cadda Formation and early Jurassic Cattamarra Coal Measures. Log character (particularly gamma ray and sonic), cuttings, sidewall core and conventional core lithologies (including sedimentary structures) and palynological data were used to identify paleoenvironments. Stacking patterns of the interpreted environments were used to define systems tracts and then sequences. New palynological data have been collected by Geoscience Australia for Gun Island 1 and the palynology for all wells has been reviewed from Well Completion Reports and slides from intervals in each well. A number of transgressive systems tracts within the dominantly continental Yarragadee Formation and Cattamarra Coal Measures record small marine incursions into the Houtman Sub-basin. Within these units, the shallow marine intervals switch rapidly with non-marine intervals suggesting a more dynamic environment existed in the Houtman Sub-basin during the Jurassic than previously thought. These marine incursions are not evident in the Yarragadee Formation in Charon 1, indicating a lack of accommodation space or proximal sediment input into the north during the mid-late Jurassic. This has significant implications for reservoir and seal facies of potential Mesozoic petroleum systems in the Houtman Sub-basin.

  • Widespread seagrass dieback in central Torres Strait, Australia has been anecdotally linked to the delivery of vast quantities of terrigenous sediments from New Guinea. The composition and distribution, and sedimentological and geochemical properties, of seabed and suspended sediments in north and central Torres Strait have been determined to investigate this issue. In northern Torres Strait, next to Saibai Island, seabed sediments comprise poorly sorted, muddy, mixed calcareous-siliciclastic sand. Seabed sediments in this region are dominated by aluminosilicate (terrigenous) phases. In central Torres Strait, next to Turnagain Island, seabed and suspended sediments comprise moderately sorted coarse to medium carbonate sand. Seabed sediments in this region are dominated by carbonate and magnesium (marine) phases. Mean Cu/Al ratios for seabed sediments next to Saibai Island are 0.01, and are similar to those found in New Guinea south coastal sediments by previous workers. Mean Cu/Al ratios for seabed sediments next to Turnagain Island are 0.02, indicating an enrichment of Cu in central Torres Strait. This enrichment comes from an exogenous biogenic source, principally from foraminifers and molluscs. We could not uniquely trace terrigenous sediments from New Guinea to Turnagain Island in central Torres Strait. If sediments are a factor in the widespread seagrass dieback in central Torres Strait, then our data suggest these are marine-derived sediments sourced from resuspension and advection from the immediate shelf areas and not terrigenous sediments dispersed from New Guinea rivers. This finding is consistent with outputs from recently developed regional hydrodynamic and sediment transport models.

  • The sediments deposited beneath the floating ice shelves around the Antarctic margin provide important clues regarding the nature of sub-ice shelf circulation and the imprint of ice sheet dynamics and marine incursions on the sedimentary record. Understanding the nature of sedimentary deposits beneath ice shelves is important for reconstructing the icesheet history from shelf sediments. In addition, down core records from beneath ice shelves can be used to understand the past dynamics of the ice sheet. Six sediment cores have been collected from beneath the Amery Ice Shelf in East Antarctica, at distances from the ice edge of between 100 and 300 km. The sediment cores collected beneath this ice shelf provide a record of deglaciation on the Prydz Bay shelf following the last glaciation. Diatoms and other microfossils preserved in the cores reveal the occurrence and strength of marine incursions beneath the ice shelf, and indicate the varying marine influence between regions of the sub-ice shelf environment. Variations in diatom species also reveal changes in sea ice conditions in Prydz Bay during the deglaciation. Grain size analysis indicates the varying proximity to the grounding line through the deglaciation, and the timing of ice sheet retreat across the shelf based on 14C dating of the cores. Two of the cores contain evidence of cross-bedding towards the base of the core. These cross-beds most likely reflect tidal pumping at the base of the ice shelf at a time when these sites were close to the grounding line of the Lambert Glacier.

  • The study of palaeotsunamis preserved in the sedimentary record has developed over the past three decades to a point where the criteria used to identify these events range from well-tested and accepted to new methods yet to receive wide application. In this paper we review progress with the development of these criteria and identify opportunities for refinements and for extending their application to new settings. The emphasis here is on promoting the use of multiple proxies, selected to best match the context of the site or region of interest. Ultimately, this requires that palaeotsunami research must be a multidisciplinary endeavour and indeed, extend beyond the geological sciences of sedimentology and stratigraphy to include knowledge and approaches from field such as archaeology, anthropology and sociology. We also argue that in some instances, despite the use of multiple proxies, the ev

  • There is growing global concern for the impact of increased fluvial sediment loads on tropical coral reefs and seagrass ecosystems. The Fitzroy River is a macrotidal, tide-dominated estuary in the dry tropics of central Queensland and is a major contributor of sediment to the southern Great Barrier Reef (GBR) lagoon. The estuary currently receives most of its sediment during large episodic flood events commonly associated with cyclonic depressions. The sediment dynamics of macrotidal estuaries and especially of wet-dry tropical systems, with intermittent flows and sediment discharge are poorly understood. Average annual sediment budgets for such a system are also difficult to estimate due to the sporadic nature of flood discharge events. Therefore we have estimated a long-term sediment accumulation rate of catchment-derived sediment trapped in the estuary using the Holocene stratigraphic sequence, determined from a series of sediment cores, dated with radiocarbon and optically stimulated luminescence (OSL), and integrated with industry borehole data. We estimate that 17,400 million tonnes (Mt) of river sediment has accumulated in the estuary during the last 8000 years. This suggests a minimum mean annual bulk sediment discharge of the Fitzroy River of 2000 kt yr-1. This estimated 2175 kilotonnes per year (kt yr-1) of bulk sediment is equivalent to 25% of the estimated average annual modern bulk sediment discharge of the Fitzroy River of 8800 kt yr-1, (Kelly and Wong, 1996) suggesting that the sediment trapping efficiency of the Fitzroy estuary during the Holocene has been approximately 25%. This implies that 75% of the river sediment has been exported from the estuary into Keppel Bay and the adjacent GBR lagoon during the Holocene. With minimal accommodation space left in the floodplain, modern sediment accumulation appears to be focussed around the mangroves and tidal creeks, which cover an area of 130 km2. Cores from the tidal creeks were dated using 137Cs, excess 210Pb, and OSL and display sedimentation rates of approximately 1.5 cm yr-1 for the last 45-120 years, or 1700 kt yr-1, and suggest a modern sediment trapping efficiency for the estuary of around 19%. These results provide useful insights into the long-term sedimentation and quantification of the sediment trapping efficiency of a subtropical macro-tidal estuary with episodic floods, where sediment trapping will vary seasonally and inter-annually.