vegetation
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
How much easier it would be to map and quantify the key elements of the hydrological cycle if the Earth's surface was transparent! Unfortunately, this is not the case and it is this very inability to penetrate to sufficient depths to map and quantify groundwater components of the hydrological cycle that currently necessitates the integration of satellite- airborne- and ground observations. In Australia, important advances have been made in the last 3 years in quantifying key elements of the hydrological cycle. This has been achieved in part through the increased use of Landsat, MODIS, SPOT, hyperspectral, NOAA and LiDAR datasets to improve the mapping and quantification of surface water, evapotranspiration, soil moisture and recharge and discharge. However, significant limitations remain in using satellite-based platforms alone for quantifying catchment water balances, surface-groundwater interactions, groundwater resource estimation and managing groundwater dependent ecosystems. Increasingly, the need to map the key elements of the hydrological cycle to calibrate water balance models and for environmental management, is leading to the development of more holistic systems approaches, involving the integration of satellite-, airborne and ground-based techniques and measurements. One example is in the River Murray Corridor (RMC) in SE Australia, where previous attempts to assess the water needs for iconic floodplain wetland ecosystems, based largely on satellite-based measurements, did not adequately take into account sub-surface soil conditions and groundwater quality and processes. In floodplain environments such as the River Murray Floodplain, the factors that govern tree health are invariably complex, and include a wide range of biophysical and biogeochemical factors.
-
Atlas of Regolith Materials of Queensland. Companion to the 1:2,500,00 Queensland Regolith-Landform Map and GIS. Both broad and detailed regolith mapping and characterisation of materials was used to build an understanding of the regolith and its associated landforms. This state-wide overview contributes significantly to understanding the regolith and landform processes and regolith materials of Australian arid and coastal environments. This Queensland study extends seamlessly from the Northern Territory Regolith Landform Map and provides a broad-scale framework fro guiding geochemical prospecting for a wide range of minerals and materials.
-
In many areas of the world, vegetation dynamics in semi-arid floodplain environments have been seriously impacted by increased river regulation and groundwater use. With increases in regulation along many rivers in the Murray-Darling Basin, flood volume, seasonality and frequency have changed which has in turn affected the condition and distribution of vegetation. Floodplain vegetation can be degraded from both too much and too little water due to regulation. Over-regulation and increased use of groundwater in these landscapes can exacerbate the effects related to natural climate variability. Prolonged flooding of woody plants has been found to induce a number of physiological disturbances such as early stomatal closure and inhibition of photosynthesis. However, drought conditions can also result in leaf biomass reduction and sapwood area decline. Depending on the species, different inundation and drought tolerances are observed. Identification of groundwater-dependent terrestrial vegetation, and assessment of the relative importance of different water sources to vegetation dynamics, typically requires detailed ecophysiological studies over a number of seasons or years as shown in Chowilla, New South Wales [] and Swan Coastal Plain, Western Australia []. However, even when groundwater dependence can be quantified, results are often difficult to upscale beyond the plot scale. Quicker, more regional approaches to mapping groundwater-dependent vegetation have consequently evolved with technological advancements in remote sensing techniques. Such an approach was used in this study. LiDAR canopy digital elevation model (CDEM) and foliage projected cover (FPC) data were combined with Landsat imagery in order to characterise the spatial and temporal behaviour of woody vegetation in the Lower Darling Floodplain, New South Wales. The multi-temporal dynamics of the woody vegetation were then compared to the estimated availability of different water sources in order to better understand water requirements.
-
The combination of anthropogenic activity and climate variability has resulted in changes to hydrologic regimes across the globe. Changes in water availability impact on vegetation structure and function, particularly in semi-arid landscapes. Riparian and floodplain vegetation communities are sensitive to changes to surface-water and groundwater availability in these water-limited landscapes. Remote-sensing multi-temporal methods can be used to detect changes in vegetation at a regional to local scale. In this study, a `best-available pixel' approach was used to represent dry-season, woody-vegetation-canopy characteristics inferred from Normalised Difference Vegetation Index (NDVI). This paper describes a method in which Landsat 5 TM and Landsat 7 ETM+ data from 1987 to 2011 were processed using object-based image-analysis techniques to generate annual minimum NDVI values for vegetation communities in the Lower-Darling floodplain The changes detected in riparian and floodplain canopies over time can then be integrated with other spatial data to identify water-source dependence and infer a relationship between changes to the hydrologic characteristics of specific water sources and vegetation dynamics.
-
Inland sulfidic soils have recently formed throughout wetlands of the Murray River floodplain associated with increased salinity and river regulation (Lamontagne et al., 2006). Sulfides have the potential to cause widespread environmental degradation both within sulfidic soils and down stream depending on the amount of carbonate available to neutralise acidity (Dent, 1986). Sulfate reduction is facilitated by organic carbon decomposition, however, little is known about the sources of sedimentary organic carbon and carbonate or the process of sulfide accumulation within inland sulfidic wetlands. This investigation uses stable isotopes from organic carbon (13C and 15N), inorganic sulfur (34S) and carbonate (13C and 18O) to elucidate the sources and cycling of sulfur and carbon within sulfidic soils of the Loveday Disposal Basin.
-
In many areas of the world, vegetation dynamics in semi-arid floodplain environments have been seriously impacted by increased river regulation and groundwater use. In this study, the condition of two of Australia's iconic riparian and floodplain vegetation elements, River Red Gums (Eucalyptus camaldulensis) and Black Box (E. largiflorens) are examined in relation to differing hydraulic regimes. With increases in regulation along Murray-Darling Basin rivers, flood volume, seasonality and frequency have changed which has in turn affected the condition and distribution of vegetation. Rather than undertaking a field based assessment of tree health in response to current water regimes, this paper documents a remote sensing study that assessed historic response of vegetation to a range of different climatic and hydraulic regimes at a floodplain scale. This methodology innovatively combined high-resolution vegetation structural mapping derived from LiDAR data (Canopy Digital Elevation Model and Foliage Projected Cover) with 23 years of Landsat time-series data. Statistical summaries of Normalised Difference Vegetation Index values were generated for each spatially continuous vegetation structural class (e.g. stand of closed forest) for each Landsat scene. Consequently long-term temporal change in vegetation condition was assessed against different water regimes (drought, local rainfall, river bank full, overbank flow, and lake filling). Results provide insight into vegetation response to different water sources and overall water availability. Additionally, some inferences can be made about lag times associated with vegetation response and the duration of the response once water availability has declined (e.g. after floodwaters recede). This methodology should enable water managers to better assess the adequacy of environmental flows.
-
National vegetation cover derived from: - Values 1, 7, and 8 from the 2007 forests dataset (BRS) - Values 2 and 3 from the NVIS 3.1 dataset (ERIN) - Values 1-6 and 9-11 from the catchment scale land use dataset (as at April 2009, BRS) - Any remaining no data areas filled from the Integrated Vegetation 2008 dataset (BRS) The datasets were resampled to 100 metre grids and projected to Albers equal area if required. The integrated vegetation grid was derived using a conditional statement weighing each input grid in the order listed above. Bureau of Rural Sciences, Canberra are custodians of the dataset.
-
Identification of groundwater-dependent (terrestrial) vegetation, and assessment of the relative importance of different water sources to vegetation dynamics commonly involves detailed ecophysiological studies over a number of seasons or years. However, even when groundwater dependence can be quantified, results are often difficult to upscale beyond the plot scale. Consequently, quicker, more regional mapping approaches have been developed. These new approaches utilise advances in computation geoscience, and remote sensing and airborne geophysical technologies. The Darling River Floodplain, western New South Wales, Australia, was selected as the case study area. This semi-arid landscape is subject to long periods of drought followed by extensive flooding. Despite the episodic availability of surface water resources, two native Eucalyptus species, E. camaldulensis (River Red Gum) and E. largiflorens (Black Box) continue to survive in these conditions. Both species have recognised adaptations, include the ability to utilise groundwater resources at depth. A remote sensing methodology was developed to identify those communities potentially dependent on groundwater resources during the recent millennium drought in Australia.
-
No abstract available
-
Geoscience Australia (GA) was invited by Murray-Darling Basin Authority (MDBA) in 2010 to participate in an evaluation of the Intermap IFSAR (Interferometric Synthetic Aperture RADAR) data that was acquired as part of the Murray-Darling Basin Information Infrastructure Project Stage 1 (MDBIIP1) in 2009. This evaluation will feed into the business case for Stage 2 of the project. As part of the evaluation GA undertook the following: 1. A comparison of the IFSAR Digital Surface Model (DSM) and Digital Terrain Model (DTM) with a recent LiDAR acquisition, covering approximately 9000Km2 of the Lower Darling Region. It focused on assessment of the data over various land cover and terrain types and identified opportunities and issues with integrating IFSAR with LiDAR. 2. A comparison of the IFSAR Vegetation Canopy Surface (DSM minus DTM) with the Lower Darling LiDAR Canopy Elevation Model (CEM). 3. A comparison between currently mapped man-made and natural water bodies over the Murray-Darling Basin with the IFSAR derived products (water mask). 4. Application of the National Catchment Boundaries (NCBs) methodology to the IFSAR data and comparison with the delineated watersheds from PBS&J (Intermap's sub-contractor). This report outlines the findings of this evaluation based on the 4 items above MDBA requested.