From 1 - 10 / 50
  • The Northern Australian Development Committee nominated the region of the Ord and Victoria rivers to be surveyed by the Northern Australian Regional Survey, when the Barkly Region had been completed. The immediate objectives of the Survey are "to accurately record the nature of the country, to establish a sound basis upon which the production possibilities of the Region may be appraised and to make general recommendations concerning development and further investigations." It was decided that the region should include the Army Four Mile Map Sheets of Delamere, Victoria River Downs, Wave Hill, Birrundudu, Limbunya, Waterloo, Auvergne, Port Keats, Medusa Banks, Cambridge Gulf, Lissadell, Dixon Range, and Gordon Downs, and that the field work would be commenced during the 1949 dry season. The techniques and methods used to complete this survey work are noted. The stratigraphy, pedology, and economic geology of the area are described in some detail.

  • Data gathered in the field during the sample collection phase of the National Geochemical Survey of Australia (NGSA) has been used to compile the Preliminary Soil pH map of Australia. The map, which was completed in late 2009, offers a first-order estimate of where acid or alkaline soil conditions are likely to be expected. It provides fundamental datasets that can be used for mineral exploration and resource potential evaluation, environmental monitoring, landuse policy development, and geomedical studies into the health of humans, animals and plants.

  • Introduction Low-density geochemical surveys provide a cost-effective means to assess the composition of near-surface materials over large areas. Many countries in the world have already compiled geochemical atlases based on such data. These have been used for a number of applications, including: - establish baselines from which future changes can be measured - design geologically sensible targets for remediation of contaminated sites - support decision-making regarding appropriate land-use - explore for natural resources - study links between geology and plant/animal health (geohealth) A first pilot project was initiated to help establish sampling and analytical protocols relevant to Australian landscapes and climates. The Riverina region was chosen for this study because of its crucial economic, environmental and societal importance within the Murray-Darling basin. The region is a prime agricultural area, is bordered to the south by the Victorian goldfields, and is home to 11% of the Australian population. Results of this study are presented here. Methods Using a hydrological analysis, 142 sites near the outlets of large catchments were selected within the 123,000 km2 survey area (1 site per 866 km2 on average). At each site, two 10-cm thick overbank sediment samples were taken, one at the surface ('top overbank sediment', TOS) and the other between 60 and 90 cm depth (`bottom overbank sediment', BOS). These were described, dried, sieved (<180 m) and analysed chemically for 62 elements. Exploratory data analysis was undertaken and geochemical maps (various styles are shown here) were prepared. Results and discussion The geology of the area is dominated by Cainozoic sediments found in low-relief plains over the vast majority of the Riverina. The eastern and southern fringes of the area form higher relief landforms developed on outcropping or subcropping Palaeozoic sedimentary, mafic and felsic volcanic and felsic intrusive rocks. The geochemical results of the survey are independently corroborated by the good match between the distributions of K, U and Th concentrations in TOS and airborne gamma-ray maps. The distribution of Ca in BOS indicates generally higher concentrations in the northern part of the study area, which is also reflected in higher soil pH values there. Such data have implications for soil fertility and management in agricultural areas. In terms of applications to mineral exploration, dispersion trains of typical pathfinder elements for gold mineralisation, like As and Sb are clearly documented by the smoothly decreasing concentrations from south (near the Victorian goldfields) to north (over sediments from the Murray basin). Chromium is an element that can be associated with ill-health in animals and humans when present over certain levels. There is a smooth increase in Cr concentration from north to south, and the two sites with the highest values can be correlated with a ridge of Cambrian mafic volcanics. High total Cr concentrations in the Riverina are unlikely, however, to lead to serious health problems as only a very small proportion of Cr will be bioavailable. Conversely, some elements can be present at concentrations that are too low for optimum plant growth, such as potentially Mo. The distribution map for this element shows a general decrease from south to north. Given its lower bioavailability in acid soils, Mo is likely to be deficient in the south of the region, despite higher total concentrations here. Farmers report the necessity to use Mo-enriched fertilisers in this area. Conclusions Low-density geochemical surveys can be conducted in Australia using common regolith sampling media. They provide a cost-effective, internally consistent dataset that can be used by to support a variety of critical economic, environmental and societal decisions.

  • A new continental-scale geochemical atlas and dataset for Australia were officially released into the public domain at the end of June 2011. The National Geochemical Survey of Australia (NGSA) project, which started in 2007 under the Australian Government's Onshore Energy Security Program at Geoscience Australia, aimed at filling a huge knowledge gap relating to the geochemical composition of surface and near-surface materials in Australia. Better understanding the concentration levels and spatial distributions of chemical elements in the regolith has profound implications for energy and mineral exploration, as well as for natural resource management. In this world first project, a uniform regolith medium was sampled at an ultra-low density over nearly the entire continent, and subsamples from two depths and two grain-size fractions were analysed using up to three different (total, strong and weak) chemical digestions. This procedure yielded an internally consistent and comprehensive geochemical dataset for 68 chemical elements (plus additional bulk properties). From its inception, the emphasis of the project has been on quality control and documentation of procedures and results, and this has resulted in eight reports (including an atlas containing over 500 geochemical maps) and a large geochemical dataset representing the significant deliverables of this ambitious and innovative project. The NGSA project was carried out in collaboration with the geoscience agencies from every State and the Northern Territory under National Geoscience Agreements. .../...

  • Recently, continental-scale geochemical surveys of Europe and Australia were completed. Thanks to having exchanged internal project standards prior to analysing the samples, we can demonstrate direct comparability between these datasets for 10 major oxides (Al2O3, CaO, Fe2O3, K2O, MgO, MnO, Na2O, P2O5, SiO2 and TiO2), 16 total trace elements (As, Ba, Ce, Co, Cr, Ga, Nb, Ni, Pb, Rb, Sr, Th, V, Y, Zn and Zr), 14 aqua regia extracted elements (Ag, As, Bi, Cd, Ce, Co, Cs, Cu, Fe, La, Li, Mn, Mo and Pb), Loss On Ignition (LOI) and pH. It is useful to compare these new datasets, covering 12 million km2, with compositional estimates from other continents, the upper continental crust and, indeed, published average world soil values. Comparison with other continental datasets is hampered by differences in sampling strategies (media, depth, etc.), sample preparation (esp. sieving), sample analysis (total vs partial analysis), and data reporting (means vs medians). Overall, it appears that different continents have distinct geochemical characteristics. Using upper continental crust concentrations to estimate 'average' global soil compositions is over-simplistic and unwarranted. We propose a set of Preliminary Empirical Global Soil reference values from 2 continental-scale geochemical surveys (PEGS2) based on the median values measured for Europe and Australia, for the elements listed above. These empirical values can be significantly different to previous (theoretical) world soil values. For instance PEGS2 values are systematically lower in Al2O3, CaO, Fe2O3, P2O5, Ba and Sr than previous estimates.

  • The ability of thermal and shortwave infrared spectroscopy to characterise composition and textural was evaluated using both particle size separated soil samples and raw soils. Particle size analysis and separation into clay, silt and sand sized soil fractions was undertaken to examine possible relationships between quartz and clay mineral spectral signatures, and soil texture. Spectral indices, based on thermal infrared specular and volume scattering features, were found to discriminate clay mineral-rich soil from mostly coarser quartz-rich sandy soil, and to a lesser extent, from the silty quartz-rich soil. Further investigations were undertaken using spectra and information on 51 USDA and other soils within the ASTER Spectral Library to test the application of shortwave, mid- and thermal infrared spectral indices for the derivation of clay mineral, quartz and organic carbon content. A non linear correlation between quartz content and a TIR spectral index based on the 8.62 im was observed. Preliminary efforts at deriving a spectral index for the soil organic carbon content, based on 3.4 - 3.5 im fundamental H-C stretching vibration bands were also undertaken with limited results.

  • The present report is a compilation of 531 geochemical maps that result from the National Geochemical Survey of Australia. These constitute the first continental-scale series of geochemical maps based on internally consistent, state-of-the-art data pertaining to the same sampling medium collected, prepared and analysed in a uniform and well documented manner and over a short time period (four years). Interpretations of the data and maps will be published separately.

  • pH is one of the more fundamental soil properties governing nutrient availability, metal mobility, elemental toxicity, microbial activity and plant growth. The field pH of topsoil (0-10 cm depth) and subsoil (~60-80 cm depth) was measured on floodplain soils collected near the outlet of 1186 catchments covering over 6 M km2 or ~80% of Australia. Field pH duplicate data, obtained at 124 randomly selected sites, indicates a precision of 0.5 pH unit (or 7%) and mapped pH patterns are consistent and meaningful. The median topsoil pH is 6.5, while the subsoil pH has a median pH of 7 but is strongly bimodal (6-6.5 and 8-8.5). In most cases (64%) the topsoil and subsoil pH values are similar, whilst, among the sites exhibiting a pH contrast, those with more acidic topsoils are more common (28%) than those with more alkaline topsoils (7%). The distribution of soil pH at the national scale indicates the strong controls exerted by precipitation and ensuing leaching (e.g., low pH along the coastal fringe, high pH in the dry centre), aridity (e.g., high pH where calcrete is common in the regolith), vegetation (e.g., low pH reflecting abundant soil organic matter), and subsurface lithology (e.g., high pH over limestone bedrock). The new data, together with existing soil pH datasets, can support regional-scale decision-making relating to agricultural, environmental, infrastructural and mineral exploration decisions.

  • Geochemical data from two continental-scale soil surveys in Europe and Australia are presented and compared. Internal project standards were exchanged to assess comparability of analytical results. The total concentration of 26 elements (Al, As, Ba, Ca, Ce, Co, Cr, Fe, Ga, K, Mg, Mn, Na, Nb, Ni, P, Pb, Rb, Si, Sr, Th, Ti, V, Y, Zn, and Zr), Loss On Ignition (LOI) and pH are found to be comparable. In addition, for the first time, directly comparable data for 14 elements in an aqua regia extraction (Ag, As, Bi, Cd, Ce, Co, Cs, Cu, Fe, La, Li, Mn, Mo, and Pb) are provided for both continents. Median soil compositions are remarkably close, though overall Australian soils are slightly depleted in all elements with the exception of SiO2 and Zr. This is interpreted to reflect the overall longer and, in places, more intense weathering in Australia. Calculation of the Chemical Index of Alteration (CIA) gives a median value of 72% for Australia compared to 60% for Europe. In general, element concentrations vary over 3 (and up to 5) orders of magnitude. Several elements (As, Ni, Co, Bi, Li, Pb, Mn, and Cu) have a lower element concentration by a factor of 2-3 in the soils of northern Europe compared to southern Europe. The break in concentration coincides with the maximum extent of the last glaciation. In Australia the central region with especially high SiO2 concentrations is commonly depleted in many elements. The data provided define the natural background variation for two continents on both hemispheres based on real data. Judging from the experience of these two continental surveys it can be concluded that analytical quality is the key requirement for the success of global geochemical mapping.

  • As a results of representations made to the Bureau of Mineral Resources by the Australian Aluminium Production Commission during 1948 a brief examination was made in July, 1949, of the area known as Sogeri Plateau which is situated some 24 miles east-north-east of Port Moresby. The object of the inspection was to determine whether any bauxitic laterite was present on the plateau and if so to obtain samples for chemical determination of alumina soluble in caustic soda solution, that is, alumina extractable by the Bayer process. Three car traverses of the area were made - one along the Sogeri-Uberi road, one along the Sogeri-Subitana road and one along the Sogeri-Eilogo road. Two grab samples were collected and sent for analysis. The findings of the examination of the area and the results of the chemical analyses are described in this report.