From 1 - 10 / 74
  • A comprehensive earthquake impact assessment requires an exposure database with attributes that describe the distribution and vulnerability of buildings in the region of interest. The compilation of such a detailed database will require years to develop for a moderate-sized city, let alone on a national scale. To hasten this database development in the Philippines, a strategy has been employed to involve as many stakeholders/organizations as possible and equip them with a standardized tool for data collection and management. The best organizations to tap are the local government units (LGUs) since they have better knowledge of their respective area of responsibilities and have a greater interest in the use of the database. Such a tool is being developed by PHIVOLCS-DOST and Geoscience Australia. Since there are about 1,495 towns and cities in the country with varying financial capacities, this tool should involve the use of affordable hardware and software. It should work on ordinary hardware, such as an ordinary light laptop or a netbook that can easily be acquired by these LGUs. The hardware can be connected to a GPS and a digital camera to simultaneously capture images of structures and their location. The system uses an open source database system for encoding the building attributes and parameters. A user-friendly GUI with a simplified drop-down menu, containing building classification schema, developed in consultation with local engineers, is utilised in this system. The resulting national database is integrated by PHIVOLCS-DOST and forms part of the Rapid Earthquake Damage Assessment System (REDAS), a hazard simulation tool that is also made available freely to partner local government units.

  • The development of climate change adaptation policies must be underpinned by a sound understanding of climate change risk. As part of the Hyogo Framework for Action, governments have agreed to incorporate climate change adaptation into the risk reduction process. This paper explores the nature of climate change risk assessment in the context of human assets and the built environment. More specifically, the paper's focus is on the role of spatial data which is fundamental to the analysis. The fundamental link in all of these examples is the National Exposure Information System (NEXIS) which has been developed as a national database of Australia's built infrastructure and associated demographic information. The first illustrations of the use of NEXIS are through post-disaster impact assessments of a recent flood and bushfire. While these specific events can not be said to be the result of climate change, flood and bushfire risks will certainly increase if rainfall or drought become more prevalent, as most climate change models indicate. The second example is from Australia's National Coastal Vulnerability Assessment which is addressing the impact of sea-level rise and increased storms on coastal communities on a national scale. This study required access to or the development of several other spatial databases covering coastal landforms, digital elevation models and tidal/storm surge. Together, these examples serve to illustrate the importance of spatial data to the assessment of climate change risk and, ultimately, to making informed, cost-effective decisions to adapt to climate change.

  • Evidence based disaster management enables decision makers to manage more effectively because it yields a better informed understanding of the situation. When based on evidence, the decision making process delivers more rational, credible and objective disaster management decisions, rather than those influenced by panic. The translation of fundamental data into information and knowledge is critical for decision makers to act and implement the decisions. The evidence from appropriate information helps both tactical and strategic responses to minimise impacts on community and promote recovery. The information requirements of such a system are quite comprehensive in order to estimate the direct and indirect losses; the short and long term social and economic resilience. Disasters may be of rapid onset in nature like earthquakes, tsunamis and blast. Others are slow onset such those associated with gradual climate change. Climate change has become a real challenge for all nations and the early adaptors will reduce risk from threats such as increased strength of tropical cyclones, storm surge inundations, floods and the spread of disease vectors. The Australian Government has recognised the threats and prioritised adaptation as an opportunity to enhance the nation's existing infrastructure and thereby reduce risk. A thorough understanding of the exposure under current and future climate projections is fundamental to this process of future capacity building. The nation's exposure to these increased natural hazards includes all sectors from communities to businesses, services, lifeline utilities and infrastructure. The development of a National Exposure Information System (NEXIS) is a significant national capacity building task being undertaken by Geoscience Australia (GA). NEXIS is collecting, collating, managing and providing the exposure information required to assess multi-hazard impacts.

  • Crucial elements for assessing earthquake risk are exposure and vulnerability. In assessing earthquake risk to the Australian built environment we need to know what is exposed to earthquake ground motion and also how vulnerable the exposed infrastructure is to the severity of shaking. While central business district (CBD) buildings make up a relatively small proportion of Australia's built environment their function and the business activity they support is vital to Australia's economy. This paper describes an ongoing effort by the Australian Government to undertake engineering and architectural surveys of buildings within state capital CBDs. With funding from the Attorney-General's Department Geoscience Australia has recently completed a survey of the Melbourne CBD and will complete surveys of the Sydney, Adelaide and Brisbane CBDs this financial year. Survey teams comprise a structural engineer and a GIS operator who populates survey fields on a handheld computer. Approximately 90 survey data fields are incorporated in the template to enable capture of the variety in building features. The fields cover building characteristics that are understood to influence earthquake vulnerability. A summary of the survey activity undertaken to date is presented here along with some examples of the type of data that is being collected.

  • An increase in the frequency and intensity of storms, coastal flooding, and spread of disease as a result of projected climate change and sea-level rise is likely to damage built environments and adversely affect a significant proportion of Australia's population. Understanding the assets at risk from climate change hazards is critical to the formulation of adaptation responses and early action is likely to be the most cost effective approach to managing the risk. Understanding the level of exposure of assets, such as buildings, lifeline utilities and infrastructure, under current and future climate projections is fundamental to this process. The National Exposure Information System (NEXIS) is a significant national capacity building task being undertaken by Geoscience Australia (GA). NEXIS is collecting, collating, managing and providing the exposure information required to assess climate change impacts. It provides residential, business and infrastructure exposure information derived from several fundamental datasets. NEXIS is also expanding to include institutions (such educational, health, emergency, government and community buildings) and lifeline support infrastructure exposure. It provides spatial exposure data in GIS format at a building level and is often provided to clients for an area of interest. It is also designed to predict future exposure for climate change impact analysis. NEXIS is currently sourcing more specific datasets from various data custodians including state and local governments along with private data providers. NEXIS has been utilised in various climate change impact projects undertaken by CSIRO, the Department of Climate Change (DCC), the Department of Environment, Water, Heritage and the Arts (DEWHA), and several universities. Examples of these projects will be outlined during the presentation.

  • A model to assess severe wind hazard using climate-simulated wind speeds has been recently completed at Geoscience Australia. The model can calculate return period of wind speeds over a given region considering current as well as future climate conditions. The winds extracted from the climate simulations are winds at 10m height over open terrain. In hazard studies it is important however, to refer the wind speeds to the characteristics of the given location in order to calculate the actual severe wind hazard at the regional level. This is achieved by multiplying the generic wind hazard by a number of wind multipliers. One of those multipliers is wind direction. The wind direction multiplier recognises the prevailing direction of the strongest winds and affects the wind hazard accordingly. Lower wind hazard would correspond to the direction of low wind speeds. In practical applications engineers calculate the wind load in structures by multiplying the design wind speeds recommended by the Australian/NZ standards for wind loading in structures (AS/NZS 1170.2:2010) by some generic multipliers also given in the standards. The multipliers have been developed considering a number of Bureau of Meteorology (BoM) weather recording stations at particular locations in Australia; this method cannot capture the actual regional characteristics in such a vast country like Australia. In this paper we propose a new methodology for calculation of wind direction multipliers based on wind speeds and direction extracted from climate simulations. Our method allows a more realistic assessment of the wind direction multiplier at a particular region.

  • 11-5413 The Probabilistic Volcanic Ash - Hazard Map movie describes how you construct a probabilistic hazard map for volcanic ash, using an example scenario from GA's volcanic ash modelling work in West Java, Indonesia. The target audience is other govt. agencies both national and international, and the general public. The 3.3 minute movie uses 3D Max animations and 2D affects, has narration and production music. The narration will also be done in Bahasa Indonesian, at a later date.

  • Disaster management is most effective when it is based on evidence. Evidence-based disaster management means that decision makers are better informed, and the decision making process delivers more rational, credible and objective disaster management outcomes. To achieve this, fundamental data needs to be translated into information and knowledge, before it can be put to use by the decision makers as policy, planning and implementation. Disaster can come in all forms: rapid and destructive like earthquakes and tsunamis, or gradual and destructive like drought and climate change. Tactical and strategic responses need to be based on the appropriate information to minimise impacts on the community and promote subsequent recovery. This implies a comprehensive supply of information, in order to establish the direct and indirect losses, and to establish short and long term social and economic resilience. The development of the National Exposure Information System (NEXIS) is a significant national project being undertaken by Geoscience Australia (GA). NEXIS collects, collates, manages and provides the information required to assess multi-hazard impacts. Exposure information may be defined as a suite of information relevant to all those involved in a natural disaster, including the victims, the emergency services, and the policy and planning instrumentalities.

  • Geoscience Australia (GA) is currently undertaking a process of revising the Australian National Earthquake Hazard Map using modern methods and an updated catalogue of Australian earthquakes. This map is a key component of Australia's earthquake loading standard, AS1170.4. Here we present an overview of work being undertaken within the GA Earthquake Hazard Project towards delivery of the next generation earthquake hazard map. Knowledge of the recurrence and magnitude (including maximum magnitude) of historic and pre-historic earthquakes is fundamental to any Probabilistic Seismic Hazard Assessment (PSHA). Palaeoseismological investigation of neotectonic features observed in the Australian landscape has contributed to the development of a Neotectonic Domains model which describes the variation in large intraplate earthquake recurrence behaviour across the country. Analysis of fault data from each domain suggests that maximum magnitude earthquakes of MW 7.0-7.5±0.2 can occur anywhere across the continent. In addition to gathering information on the pre-historic record, more rigorous statistical analyses of the spatial distribution of the historic catalogue are also being undertaken. Earthquake magnitudes in Australian catalogues were determined using disparate magnitude formulae, with many local magnitudes determined using Richter attenuation coefficients prior to about 1990. Consequently, efforts are underway to standardise magnitudes for specific regions and temporal periods, and to convert all earthquakes in the catalogue to moment magnitude. Finally, we will review the general procedure for updating the national earthquake hazard map, including consideration of Australian-specific ground-motion prediction equations. We will also examine the sensitivity of hazard estimates to the assumptions of certain model components in the hazard assessment.

  • The impacts of climate change on sea level rise (SLR) will adversely affect infrastructure in a significant number of Australian coastal communities. A first-pass national assessment has identified the extent and value of infrastructure potentially exposed to impacts from future climate by utilizing a number of fundamental national scale datasets. A mid-resolution digital elevation model was used to model a series of SLR projections incorporating 100 year return-period storm-tide estimates where available (maximum tidal range otherwise). The modeled inundation zones were overlaid with a national coastal geomorphology dataset, titled the Smartline, which identified coastal landforms that are potentially unstable under the influence of rising sea level. These datasets were then overlain with Geoscience Australia's National Exposure Information System (NEXIS) to quantify the number and value of infrastructure elements (including residential and commercial buildings, roads and rail) potentially vulnerable to a range of sea-level rise and coastal recession estimates for the year 2100. In addition, we examined the changes in exposure under a range of future Australian Bureau of Statistics population scenarios. We found that over 270,000 residential buildings are potentially vulnerable to the combined impacts of inundation and recession by 2100 (replacement value of approximately $A72 billion). Nearly 250,000 residential buildings were found to be potentially vulnerable to inundation only ($A64 billion). Queensland and New South Wales have the largest vulnerability considering both value of infrastructure and the number of buildings affected. Nationally, approximately 33,000 km of road and 1,500 km of rail infrastructure are potentially at risk by 2100.