From 1 - 10 / 112
  • Acorn worms (Enteropneusta), which were previously thought to be a missing link in understanding the evolution of chordates, are an unusual and potentially important component of many deep-sea benthic environments, particularly for nutrient cycling. However very little is known about their distribution, abundance, or behaviour in deep-sea environments around the world, and almost nothing is known about their distribution within Australian waters. In this study, we take advantage of two large-scale deep-sea mapping surveys along the eastern and western continental margins of Australia to quantify the distribution, abundance and trail-forming behaviour of this highly unusual taxon. This is the first study to quantify the abundance and trail behaviour of acorn worms within Australian waters and provides the first evidence of strong depth-related distributions.

  • Submarine canyons have been recognised as areas of significant ecological and conservation value for their enhanced primary productivity, benthic biomass and biodiversity. In Australia, 753 submarine canyons were mapped on all margins of the continent by the Marine Biodiversity Hub through the Australian Government's National Environmental Research Program. An analysis of canyon geomorphic metrics provided the basis to objectively classify these canyons across a hierarchy of physical characteristics (e.g. volume, depth range, rugosity) separately for shelf-incising and slope-confined canyons (Huang et al., 2014). Here we extend this analysis to include oceanographic variables in presenting a first pass assessment of habitat quality for all canyons on the Australian margin, with a focus on their upper reaches. This study is based on the premise that habitat heterogeneity, productivity and disturbance are the three factors that potentially determine the quality of a canyon habitat. For each factor we derived a range of variables to inform the assessment of habitat quality (see Table). Habitat heterogeneity was measured using a selection of eight geomorphic metrics including canyon volume and rugosity that are considered likely to have a positive relationship with habitat heterogeneity. Canyon productivity was assessed from five variables including: distance to the shelf break as a proxy of nutrient inputs from land and the continental shelf; bottom current speed as an indicator of nutrient supply to benthic epifauna (derived from time-series re-analysis of the BLUElink oceanographic model and in-situ data), and; measures of the probability, frequency and intensity of upwelling (also from BLUElink data). The BLUElink variables have positive relationships with productivity whereas the relationship between distance to shelf and productivity is negative. Benthic disturbance was assessed from the maximum and range of bottom current speeds, and the frequency and intensity of tropical cyclones. According to these relationships, individual canyons were assigned habitat quality scores, first separately for each variable and then aggregated for the three habitat factors. The final scores were obtained by averaging the scores of the three habitat factors. The results show that many submarine canyons on the eastern Australian margin have high habitat quality scores (see Figure). This is interpreted to be mainly due to the influence of the upwelling-favourable East Australian Current which generates high productivity throughout the year. The Albany canyons on the south-western margin also offer high habitat quality for marine species due to complex geometrical and geophysical structures. They also benefit from the upwelling-favourable Flinders Current. In contrast, canyons on the northern and western margins have lower habitat quality. Many of these canyons receive little input from land and continental shelf. In addition, the downwelling- favourable Leeuwin Current, which flows along the western margin of the continent, hampers the supply of deep water nutrients from reaching the upper reaches of canyons, particularly canyon heads that intersect the euphotic zone. Overall, these results provide a framework for targeted studies of canyons aimed at testing and verifying the habitat potential identified here and for establishing monitoring priorities for the ongoing management of canyon ecosystems.

  • Marine organisms are exposed not only to natural environmental stressors, but also the additional effects of anthropogenic stressors, notably increasing temperatures and reduced pH. Early life stages of marine organisms have been recognised as potentially vulnerable to the stressors associated with climate change and ocean acidification, but identifying patterns across studies, species and a range of response variables is challenging. This study is supported by the Marine Biodiversity Hub through the National Environmental Research Program and identifies knowledge gaps in research on multiple abiotic stressors and early life stage (embryo to larvae), while quantifying interactions based on life history. Temperature was the most common stressor (91% of studies), while the most common combination of stressors was temperature and salinity (66%), followed by temperature and pH (17.5%). All studies were conducted in the laboratory although four studies also undertook field experiments. Synergistic interactions (68% of individual tests) were more common than additive (16%) or antagonistic (16%) interactions. The meta-analysis yielded several key results: 1) Embryos are not more vulnerable to stress than larvae in combined stressor treatments. 2) Sub-lethal responses are not more likely to be affected by stress than lethal responses. 3) Interaction types vary among stressors, phyla, ontogenetic stages, and biological responses. 4) Elevated temperature is generally a greater stressor than ocean acidification, but this depends on ontogenetic stage and phylum. 5) Ocean acidification is a greater stressor for calcifying than non-calcifying larvae. Our findings will assist in monitoring and predicting the health of marine populations and communities by identifying sensitive and robust taxa.

  • Geoscience Australia undertook a marine survey of the Vlaming Sub-basin in March and April 2012 to provide seabed and shallow geological information to support an assessment of the CO2 storage potential of this sedimentary basin. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The Vlaming Sub-basin is located offshore from Perth, Western Australia, and was previously identified by the Carbon Storage Taskforce (2009) as potentially suitable for CO2 storage. The principal aim of the Vlaming Sub-basin marine survey (GA survey number GA0334) was to look for evidence of fault reactivation and of any past or current gas or fluid seepage at the seabed. The survey also mapped seabed habitats and biota in the areas of interest to provide information on communities and biophysical features that may be associated with seepage. This data package brings together the following datasets which describe biophysical aspects of seafloor sediments: GEOCAT#74276. Underwater video footage from the Vlaming Sub-basin (GA0334). GEOCAT#76463. GA0334 Vlaming sub-basin Species identification of worms from grab. GEOCAT#78540. Vlaming Sub-Basin Marine Environmental Survey (GA-0334/S. Supporter GP 1373) (NCIP Program) - High Resolution Bathymetry grids. GEOCAT# 78550. Seabed environments and shallow geology of the Vlaming sub-basin, Western Australia: Chlorin analyses of seabed sediments. GEOCAT#78551. Seabed environments and shallow geology of the Vlaming sub-basin, Western Australia: Inorganic elements of seabed sediments. GEOCAT#78552. Seabed environments and shallow geology of the Vlaming sub-basin, Western Australia: Bulk organic carbon and nitrogen isotopes and concentrations in seabed sediments. GEOCAT#78553. Seabed environments and shallow geology of the Vlaming sub-basin, Western Australia: Sediment oxygen demand of seabed sediments. GEOCAT#78564. Seabed environments and shallow geology of the Vlaming sub-basin, Western Australia: Chlorophyll a, b and c of seabed sediments. GEOCAT#78565. Seabed environments and shallow geology of the Vlaming sub-basin, Western Australia: %carbonate and specific surface area of seabed sediments. GEOCAT#79176. Seabed environments and shallow geology of the Vlaming sub-basin, Western Australia: Grain size and carbonate concentrations of seabed sediments. GEOCAT#79345. Ecology / Infaunal morphospecies identifications from the Vlaming Sub-basin (GA0334). An account of the field operations is published in: GEOCAT 74626. Nicholas, W. A., Borissova, I., Radke, L., Tran, M., Bernardel, G., Jorgensen, D M., Siwabessy, J., Carroll, A. and Whiteway, T., 2012. Seabed Environments and Shallow Geology of the Vlaming Sub-Basin, Western Australia - Marine data for the Investigation of the Geological Storage of CO2. GA0334 Post-Survey Report. Geoscience Australia, Record 2013/09. A preliminary interpretation of seabed data is provided in: GEOCAT 78846. Nicholas, W. A., Howard, F., Carroll, A., Siwabessy, J., Tran, M., Picard, K., Przeslawski, R. and Radke, L. 2014. Seabed Environments and shallow sub-surface geology of the Vlaming Sub-basin, offshore Perth Basin: summary report on observed and potential seepage, and habitats. Geoscience Australia, Record 2014/XXX. Information on the broader study, evaluating the Vlaming Sub-basin CO2 storage potential and providing details of the suitable storage sites, is available in: GEOCAT 79332. Borissova, I, Lech, M.E., Jorgensen, D.C, Southby, C., Wang, L., Bernardel, G., Nicholas, T., Lescinsky, D.L. and Johnston, S. An integrated study of the CO2 storage potential in the offshore Vlaming Sub-basin. Geoscience Australia, Record 2014/XXX.

  • This report provides details of activities undertaken by the Australian Institute of Marine Science (AIMS), Geoscience Australia, the University of Western Australia and the Museum and Art Gallery of the Northern Territory during a marine biodiversity survey to the Oceanic Shoals Commonwealth Marine Reserve (Timor Sea) in 2012. The survey was an activity within the Australian Government's National Environmental Research Program Marine Biodiversity Hub and is a key component of Theme 4 - Regional Biodiversity Discovery to Support Marine Bioregional Plans. Data collected during the survey will be used to support research being undertaken in other Themes of the Marine Biodiversity Hub, including the modelling of ecosystem processes for the northern region, and to support the work programs of the Department of Environment.

  • This dataset contains species identifications of molluscs collected during survey SOL4934 (R.V. Solander, 27 August - 24 September, 2009). Animals were collected from the Joseph Bonaparte Gulf with a benthic sled. Specimens were lodged at Northern Territory Museum on the 3 May 2010. Species-level identifications were undertaken by Richard Willan at the Northern Territory Museum and were delivered to Geoscience Australia on the 5 May 2010 (leg 1 only). See GA Record 2010/09 for further details on survey methods and specimen acquisition. Data is presented here exactly as delivered by the taxonomist, and Geoscience Australia is unable to verify the accuracy of the taxonomic identifications.

  • Flythrough movie showing the bathymetry, seabed habitats and biota of the outer continental shelf within the Flinders Commonwealth Marine Reserve (CMR), offshore from Flinders Island northeast Tasmania. The bathymetric image is derived from multibeam sonar collected by Geoscience Australia in 2012 using a 30 kHz Simrad EM3002 system on RV Challenger. Videos and seabed images were collected by the University of Tasmania and CSIRO as part of the same field program. Key features on the shelf bathymetry include low profile reefs, flat sandy seabed and the heads of two submarine canyons. The reefs provide hard substrate for sponge gardens whereas the sand flats are mostly barren. The two submarine canyons are sites of local upwelling, and attract large schools of Tasmanian Striped Trumpeter. The Flinders CMR is a study site for the Marine Biodiversity Research Hub, funded through the National Environmental Research Program (NERP). ..

  • This resource contains geochemistry data for the Oceanic Shoals Commonwealth Marine Reserve (CMR) in the Timor Sea collected by Geoscience Australia during September and October 2012 on RV Solander (survey GA0339/SOL5650). This dataset comprises bulk organic carbon and nitrogen concentrations (and isotopes) from the upper 2 cm of seabed sediment. The Oceanic Shoals Commonwealth Marine Reserve survey was undertaken as an activity within the Australian Government's National Environmental Research Program Marine Biodiversity Hub and was the key component of Research Theme 4 - Regional Biodiversity Discovery to Support Marine Bioregional Plans. Hub partners involved in the survey included the Australian Institute of Marine Science, Geoscience Australia, the University of Western Australia, Museum Victoria and the Museum and Art Gallery of the Northern Territory. Data acquired during the survey included: multibeam sonar bathymetry and acoustic backscatter; sub-bottom acoustic profiles; physical samples of seabed sediments, infauna and epibenthic biota; towed underwater video and still camera observations of seabed habitats; baited video observations of demersal and pelagic fish, and; oceanographic measurements of the water column from CTD (conductivity, temperature, depth) casts and from deployment of sea surface drifters. Further information on the survey is available in the post-survey report published as Geoscience Australia Record 2013/38: Nichol, S.L., Howard, F.J.F., Kool, J., Stowar, M., Bouchet, P., Radke, L., Siwabessy, J., Przeslawski, R., Picard, K., Alvarez de Glasby, B., Colquhoun, J., Letessier, T. & Heyward, A. 2013. Oceanic Shoals Commonwealth Marine Reserve (Timor Sea) Biodiversity Survey: GA0339/SOL5650 - Post Survey Report. Record 2013/38. Geoscience Australia: Canberra. (GEOCAT #76658).

  • This resource contains geochemistry data for the Oceanic Shoals Commonwealth Marine Reserve (CMR) in the Timor Sea collected by Geoscience Australia during September and October 2012 on RV Solander (survey GA0339/SOL5650). This dataset comprises carbonate concentrations and specific surface area measurments on the upper 2 cm of seabed sediments. The Oceanic Shoals Commonwealth Marine Reserve survey was undertaken as an activity within the Australian Government's National Environmental Research Program Marine Biodiversity Hub and was the key component of Research Theme 4 - Regional Biodiversity Discovery to Support Marine Bioregional Plans. Hub partners involved in the survey included the Australian Institute of Marine Science, Geoscience Australia, the University of Western Australia, Museum Victoria and the Museum and Art Gallery of the Northern Territory. Data acquired during the survey included: multibeam sonar bathymetry and acoustic backscatter; sub-bottom acoustic profiles; physical samples of seabed sediments, infauna and epibenthic biota; towed underwater video and still camera observations of seabed habitats; baited video observations of demersal and pelagic fish, and; oceanographic measurements of the water column from CTD (conductivity, temperature, depth) casts and from deployment of sea surface drifters. Further information on the survey is available in the post-survey report published as Geoscience Australia Record 2013/38: Nichol, S.L., Howard, F.J.F., Kool, J., Stowar, M., Bouchet, P., Radke, L.,Siwabessy, J., Przeslawski, R., Picard, K., Alvarez de Glasby, B., Colquhoun, J., Letessier, T. & Heyward, A. 2013. Oceanic Shoals Commonwealth Marine Reserve (Timor Sea) Biodiversity Survey:GA0339/SOL5650 - Post Survey Report. Record 2013/38. Geoscience Australia: Canberra. (GEOCAT #76658).

  • The Vlaming Sub-basin Marine Survey GA-0334 was undertaken in March and April 2012 as part of the Commonwealth Government's National CO2 Infrastructure Plan (NCIP). The purpose was to acquire geophysical and biophysical data to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. This dataset contains identifications of animals collected from 32 Van Veen grabs deployed during GA-0334. Sediment was elutriated for ~ 5 minutes over a 500um sieve. Retained sediments and animals were then preserved in 70% ethanol for later laboratory sorting and identification (see `lineage'). During sorting, all worms were separated and sent to Infaunal Data Pty Ltd (Lynda Avery) for identification to species or operational taxonomic unit (OTU). Lynda Avery completed identifications on 17 April 2013, and specimens were lodged at the Museum of Victoria. All other taxa were identified to morphospecies at GA by an ecologist. Gray shading indicates taxa identified to species level by Lynda Avery (Refer to GeoCat # 76463 for raw data of species identifications by taxonomist); all other taxa were identified to morphospecies. Data is presented here exactly as delivered by the taxonomist/ecologist, and Geoscience Australia is unable to verify the accuracy of the taxonomic identifications. Stations are named XXGRYY where XX indicates the station number, GR indicates Van Veen grabs, and YY indicates the sequence of grabs deployed (i.e. the YYth grab on the entire survey). H indicates heavy fraction animals and HS indicates animals found on a sponge. The dataset is current as of November 2014, but will be updated as taxonomic experts contribute. See GA Record 2013/09 for further details on survey methods and specimen acquisition.