From 1 - 10 / 113
  • Communities and ecosystems along the Darling River face critical water shortages and water quality issues including high salinity and algal blooms due to a reliance on declining surface water flows, which are impacted by extraction and drought, exacerbated by increases in temperature driven by climate change. The Darling River, characterised by highly variable flows, is the primary water source for the region and our understanding of the spatial extent and character of lower salinity groundwater within the surrounding Darling Alluvium, which could provide an alternative water source, is limited. Scientific understanding of the highly variable groundwater-surface water system dynamics of the Darling River is also an integral part of the evidence base required to manage the water resources of the wider Murray-Darling Basin, which has experienced critical water shortages for domestic and agricultural consumptive use and serious ecological decline due to reduced flows. Other relevant groundwater systems in the study area include aquifers of the underlying Eromanga and Surat Basins in the north, aquifers of the Murray Basin in the south, and fractured rock aquifers of the Darling Basin in the south-central area. Understanding of connectivity between these systems and the groundwater systems within the Darling Alluvium, and surface water of the Darling River, is also limited. Here we present the findings of a desktop analysis combining previous research with new analysis on water level, hydrochemistry, and Airborne Electromagnetic depth sections. This integration suggests that basement geometry and hydrostratigraphy within the Darling Alluvium are key structural controls on surface-groundwater connectivity, and the occurrence of a saline groundwater system within the lower part of the alluvium which impacts the quality of surface water and shallow alluvial groundwater resources. Further data acquisition and integrated analysis are planned to test these relationships as part of the Upper Darling Floodplain project. <b>Citation:</b> Buckerfield S., McPherson A., Tan K. P., Kilgour P. & Buchanan S., 2022. From Upper Darling Floodplain groundwater resource assessment. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146847

  • To unlock the potential of one of the largest underexplored onshore areas in Australia, the Exploring for the Future Officer-Musgrave project is delivering a wide array of publicly available new analyses and data. The collection of new AEM data, as well as the reprocessing of existing industry acquired AEM data is expected to improve the understanding of groundwater systems in the Officer-Musgrave region. New regional scale data acquisition and analysis, including stratigraphic, petrophysical and geomechanical studies from existing wells, focus on advancing understanding of petroleum systems elements and assist the exploration and evaluation of conventional and unconventional petroleum resources. Here we provide an overview of available new datasets and insights into the stratigraphy of the Officer Basin. Further analysis is underway including well log digitisation, fluid inclusion analysis and a petrographic report on Officer Basin wells. This work is expected to further improve geological knowledge and reduce the energy exploration risk of the Officer Basin, a key focus of this program. <b>Citation: </b>Carr L. K., Henson P., Wang L., Bailey A., Fomin T., Boreham C., Edwards D., Southby C., Symington N., Smith M., Halas L. & Jones T, 2022. Exploring for the Future in the Officer Musgrave region. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146988

  • Over 900 Australian mineral deposits, location and age data, combined with deposit classifications, have been used to assess temporal and spatial patterns of mineral deposits associated with convergent margins and allow assessment of the potential of poorly exposed or undercover mineral provinces and identification of prospective tracts within known mineral provinces. Here we present results of this analysis for the Eastern Goldfields Superterrane and the Tasman Element, which illustrate end-members of the spectrum of convergent margin metallogenic provinces. Combining our Australian synthesis with global data suggest that after ~3000 Ma these provinces are characterised by a reasonably consistent temporal pattern of deposit formation, termed the convergent margin metallogenic cycle (CMMC): volcanic-hosted massive sulfide – calc-alkalic porphyry copper – komatiite-associated nickel sulfide → orogenic gold → alkalic porphyry copper – granite-related rare metal (Sn, W and Mo) – pegmatite. Between ca 3000 Ma and ca 800 Ma, virtually all provinces are characterised by a single CMMC, but after ca 800 Ma, provinces mostly have multiple CMMCs. We interpret this change in metallogeny to reflect secular changes in tectonic style, with single-CMMC provinces associated with warm, shallow break-off subduction, and multiple-CMMC provinces associated with modern-style cold, deep break-off subduction. These temporal and spatial patterns can be used to infer potential for mineralisation outside well-established metallogenic tracts. <b>Citation:</b> Huston D. L., Doublier M. P., Eglington B., Pehrsson S., Mercier-Langevin P. & Piercey S., 2022. Convergent margin metallogenic cycling in the Eastern Goldfields Superterrane and Tasman Element. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/147037

  • The Exploring for the Future program Showcase 2022 was held on 8-10 August 2022. Day 1 (8th August) included a talk on: - Exploring for the Future - The value of precompetitive geoscience - Dr Andrew Heap Showcase Day 1 https://youtu.be/M9jC_TyovCc

  • This report presents key results of groundwater level interpretations from the Upper Burdekin Groundwater Project in North Queensland, conducted as part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. The Upper Burdekin Groundwater Project is a collaborative study between Geoscience Australia and the Queensland Government. It focuses on basalt groundwater resources in two geographically separate areas: the Nulla Basalt Province (NBP) in the south and the McBride Basalt Province (MBP) in the north. This report interprets groundwater levels measured in both provinces by Geoscience Australia and the Queensland Government to provide recommendations for resource management. The NBP and MBP basalt aquifers are heterogeneous, fractured, vesicular systems. Several lava flows are mapped at surface in both provinces, and the degree of hydraulic connectivity between these flows is unclear. Although there was some uncertainty due to monitoring well construction issues, barometric efficiency analyses from supporting project documents suggest that the basalts of the NBP and MBP were unconfined where monitored during the EFTF project. That finding generally matches observations presented here. Longer term groundwater hydrographs suggest that groundwater levels have been declining in the NBP and MBP following major flooding in 2010-2011 related to one of the strongest La Niña events on record. Groundwater levels are yet to decline to pre-flood elevations in places. Importantly, these longer term hydrographs set the project in context: the EFTF monitoring period is only a small fraction of a much longer-functioning, dynamic groundwater system. Nulla Basalt Province The NBP is elongated east-west, and is situated entirely within the Burdekin River catchment. Volcanic vents in the west identify that area as the main extrusive centre. Regionally, groundwater migrates through the basalts of the NBP from the western high ground towards the Burdekin River in the east. Although lava flows of the NBP reach the Burdekin River, direct groundwater discharge in this area has not yet been proven. However, groundwater does discharge to various springs and surface watercourses in the NBP that are known tributaries of the Burdekin River. Despite the presence of many registered extraction bores, no clear signs of pumping were observed in groundwater hydrographs from the NBP during the EFTF monitoring period. Water levels in many bores responded to major rainfall events, ranging from a simple change in declining hydrograph slope to a water level increase of ~6.8 m in the central west. While some responses could have been induced by loading, electrical conductivity loggers and the extent of water level rise showed that many were clearly caused by recharge. At nested monitoring locations, groundwater levels remained commensurate with downward flow potentials throughout the EFTF monitoring period. McBride Basalt Province The MBP is approximately circular in plan, with volcanic vents present in a north-northeast trending band through the province centre. Lava flows extend away from the high ground of the province centre towards lower ground near the edges. In part due to its geometry, the MBP is situated within four river catchments; only surface water landing in the east flows into the Burdekin River. Regionally, groundwater migrates through the basalts of the MBP from the central high ground radially towards the edges. Direct groundwater discharge from the MBP basalts into the Burdekin River has been shown in this project. Similarly to the NBP, groundwater is also known to discharge to numerous springs and surface watercourses in the MBP. Water levels in many bores responded to major rainfall events. Responses ranged from a change in declining hydrograph slope to a water level increase of ~6.8 m in the southeast. While some responses could have been induced by loading, the extent of water level rise showed that others were clearly caused by recharge. No nested monitoring locations were installed for the EFTF project, so vertical head gradients are currently unknown. Although there are numerous registered extraction bores in the MBP, groundwater level response to pumping was only definitively identified in the east in bore RN12010016. However, several registered bores with high estimated yields have been installed in the northeast since EFTF fieldwork completion. It is possible that these higher yielding extraction bores may induce visible drawdown in monitoring bores in the future. Their high estimated yields may be associated with lava tubes; features not reported in the literature reviewed for this project for the NBP, but identified at surface and potentially in several Queensland Government bores drilled in the MBP. Conclusions and recommendations The Upper Burdekin Groundwater Project has provided abundant information on various aspects of the hydrogeology of the Nulla and McBride basalt provinces. General groundwater flow processes are understood at a regional scale for the EFTF monitoring period, but more detailed investigations and longer term monitoring are required to fully evaluate local conditions. One of the main observations of this study are the long term groundwater level declines in both the NBP and MBP following the 2010-2011 La Niña-associated floods. Groundwater levels are yet to reduce to pre-flood elevations in places, showing that the EFTF monitoring period represents only a small fraction of a much longer-functioning, dynamic groundwater system. It is unclear what, if any, contribution groundwater extraction has made to regional water level declines. Numerous correlations were assessed between groundwater hydrograph characteristics and potentially influencing factors, but the results were mostly inconclusive. There is uncertainty in hydraulic connectivity across lava flow boundaries and between intra-lava flow aquifers. Although interesting groundwater processes were identified at many bores, at the current bore spacing it is not generally possible to interpolate between locations with any certainty. Knowledge gaps and suggestions for further investigation are recorded in Section 5 of the report. The gaps identified should assist planning of future work to inform: - Further characterisation of groundwater resources. - Protection of groundwater dependent ecosystems. - Appropriate groundwater resource management.

  • This double-sided A4 flyer promotes EFTF chronostratigraphic work in the NT, as well as the EFTF newsletter

  • July 2020: The data in this product has been superseded, with the new dataset available here: <a href="https://pid.geoscience.gov.au/dataset/ga/133388">https://pid.geoscience.gov.au/dataset/ga/133388</a> However, the report in this product still presents valuable insights e.g., into the relationship between copper in the regolith and groundwater. The mineral resources of Tennant Creek and Mt Isa have contributed tremendously to the economic development the Northern Territory and Queensland. Vast areas of poorly known mineral potential remain under explored between and around these two mining centres, with prospective solid geology covered by a relatively thin layer of transported sediments. Hydrogeochemical surveys utilise groundwater as a passive sampling medium to reveal the chemistry of the underlying geology including hidden mineralisation. These surveys also provide regional baseline groundwater datasets that can inform environmental monitoring and decision making.

  • Analytical results and associated sample and analysis metadata from the analysis of minerals in earth material samples.

  • Exploring for the Future Roadshow- Regional petroleum systems visualised in the EFTF Data Discovery Portal. A summary of petroleum systems of the Canning Basin and regional Meso- and Paleoproterozoic basins of northern Australia, and an introduction to the EFTF Data Discovery Portal

  • Presentation for the Exploring for the Future Roadshow presentation about the Kidson Sub-basin seismic survey, Waukarlycarly-1 stratigraphic well, in addition to the Centralian Super Basin well correlation study.