From 1 - 10 / 29
  • As part of the Australian Government's Onshore Energy Security Program and the Queensland Government's Smart Mining and Smart Exploration initiatives, deep seismic reflection surveys (~2300 line km) were conducted in North Queensland to establish the architecture and geodynamic framework of this area in 2006 (Mt Isa Survey; also involving OZ Minerals and pmd*CRC) and 2007 (Cloncurry-Georgetown-Charters Towers Survey; also involving AuScope). The purpose here is to use new geodynamic insights inferred from the seismic and other data to provide comments on the large-scale geodynamic controls on energy and other mineral potential in North Queensland.

  • Magnetotelluric (MT) data have been acquired in 2008 and 2009 at 40 broadband (0:01 s to 500 s) and 12 long-period (10 s to 10 000 s) sites along the east-west deep seismic reflection transect of northern Eyre Peninsula, South Australia. The MT survey is a joint project between the University of Adelaide and Geoscience Australia and is funded by the Australian Government as part of the Onshore Energy Security Program. Long-period sites are spaced 20 km apart and broadband sites infill this spacing to 10 km with also some 5 km spacing. This ensures sufficient coverage to map the upper crustal to upper mantle structures beneath northern Eyre Peninsula.

  • This article presents the results of studies in North Queensland associated with the 2007 Mt Isa-Georgetown-Charters Towers seismic survey. Results include seismic interpretation, geophysical studies and 3D maps, tectonic and metallogenic syntheses and energy potential assessment.

  • As part of the Australian Government's Onshore Energy Security Program (2006-2011) Geoscience Australia in collaboration with Geological Survey of Western Australia acquired magnetotelluric (MT) data along the deep crustal seismic reflection transect across the Yilgarn Craton, Officer Basin and Musgrave Province in Central Western Australia. The aim of the MT survey is to map the electrical resistivity distribution and improve scientific understanding of the crustal and upper mantle structure in this region. This information is complementary to that obtained from deep crustal seismic reflection, seismic refraction, potential field and geological data, which together provide new knowledge of the crustal architecture and geodynamics of the region. It is important for helping to determine the potential for both mineral and energy resources. Data are supplied as EDI files with support information.

  • Description of the Youanmi MT acquisition and processing along the 10GA-YU1, 10GA-YU2, 10GA-YU3 seismic lines. A collaborative project with the Geological Survey of WA.

  • The Natural Fields EM Forum was held in Brisbane, Queensland, Australia, on February 26, 2012, in conjunction with the ASEG 22nd International Geophysical Conference & Exhibition 2012. The forum was organised to review the current state of development of natural field EM methods (NFEM), being those methods that utilise the ambient electromagnetic field rather than deploying an additional active source as an element of a survey. NFEM methods are used to acquire data from which various parameters can be obtained to help interpret the electrical characteristics of the subsurface.

  • To investigate the standard electrical conductivity profile beneath a continent, we conducted a magnetotelluric (MT) observation with long dipole span near Alice Springs, central Australia. We utilized geomagnetic data acquired at the Alice Springs geomagnetic observatory operated by Geoscience Australia. Using the BIRRP processing code (Chave and Thomson, 2004), we estimated the MT and GDS (geomagnetic depth sounding) transfer functions for periods from 100 to 10 to 6 sec. The MT-compatible response functions converted from GDS response functions are resistive compared to the Canadian Shield (Chave et al., 1993) for periods around 10 to 5 sec. The calculated MT responses also have generally high apparent resistivity values over the entire period range. We inverted the average MT responses into a one-dimensional conductivity profile using Occam inversion (Constable et al., 1987). The resultant conductivity profile is extremely resistive (0.001 to 0.0001 S/m) down to the mantle transition zone. We compared this one-dimensional structure with electrical conductivity profiles predicted from compositional models of the earth's upper mantle by calculating phase diagrams in the CFMAS (CaO-FeO-MgO-Al2O3-SiO2) system. The on-craton and off-craton chemical composition models (Rudnick et al., 1998) were adopted for the tectosphere. The Perple_X (e.g. Connolly, 2005) programs were used to obtain mineral proportions and compositions with depth. The calculated conductivity profiles with on- and off-craton models show significantly larger magnitude than the observed. The result suggests the continental lithosphere (tectosphere) beneath Australia is extremely dry and its temperature profile is cooler than that used in the calculation.

  • The Australian Government's Onshore Energy Security Program (2006-2011) was completed recently by Geoscience Australia. The five year program provides pre-competitive geoscience data and value-added products for assessment of hydrocarbon, uranium, geothermal energy and mineral resources. As part of the program, broadband and long period magnetotelluric (MT) data have been acquired by Geoscience Australia in collaboration with relevant state and territory geoscience agencies and universities throughout Australia. The regional-scale MT profiles, which consist of more than 640 sites over 3700 km in distance, were obtained along 12 deep seismic reflection transects across potential mineral provinces and frontier sedimentary basins. New insights into the regional-scale electrical resistivity distributions and mechanisms gained from the MT data increase knowledge about lithospheric structures, tectonic processes, and regional geological features. For example, the MT results show resistivity contrasts at terrane boundaries and fault systems; Sedimentary basins, some shear zones, fluids, and melts exhibit significant low resistivity compared with the surrounding crust or upper mantle. The MT data complement deep seismic reflection, potential field and other geophysical and geological data for multi-disciplinary investigations of crustal architecture in the study regions. The integrated results demonstrate that there are significant spatial correlations between different geophysical data. The multi-disciplinary data reduce uncertainties and limitations of data considered separately and produce a more effective and reliable interpretation, especially for regions that have complex geological structures. They also improve the understanding of the mineral and energy potential in these regions.

  • 2009 Georgina-Arunta Seismic and MT Surveys - Acquisition and Processing

  • Magnetotelluric (MT) data were acquired in September 2009 in a collaborative project by Primary Industry and Resources, South Australia (PIRSA), Geoscience Australia and the University of Adelaide (UA) along the east-west southern Flinders ranges seismic traverse in South Australia. The seismic and MT data acquisition are part of the Australian Government's energy security program, with main funding being provided by PIRSA under the Plan for Accelerating Exploration (PACE) initiative. The MT data form a valuable complimentary addition to the seismic data for the investigation of energy potential and crustal architecture of this region. National facility Auscope MT instruments based at UA were used (through ANSIR agreement) to record both broadband data with a frequency range 200 Hz to 0.008 Hz and long period data with a frequency range of 10 Hz to 0.0001 Hz. This enables sensing of Earth electrical conductivity from near-surface in the crust to depths well below the Moho. Two orthogonal components of the magnetic field were measured with induction coils for the broadband acquisition, and three components of the magnetic field were recorded with fluxgate sensors for the long-period data. Two horizontal components of the electric field were measured at each site with orthogonal NS and EW dipoles ~50 m long. Data were recorded at fifteen sites with a nominal spacing of 10 km covering a profile ~150 km in length. Data are processed to industry standard EDI files prior to the generation of apparent resistivity and phase plots. A suite of plots are created to investigate dimensionality including, skew angle, phase tensor ellipses and Parkinson arrows. Parkinson arrows point to regions of high conductance and away from more resistive blocks. Preliminary analysis of the long period data has revealed that the Parkinson arrows generally point to the east at higher frequencies. At lower frequencies these arrows swing southerly pointing to the south east.