From 1 - 10 / 17
  • Papua New Guinea (PNG) lies in a belt of intense tectonic activity that experiences high levels of seismicity. Although this seismicity poses significant risks to society, the Building Code of PNG and its underpinning seismic loading requirements have not been revised since 1982. This study aims to partially address this gap by updating the seismic zoning map on which the earthquake loading component of the building code is based. We performed a new probabilistic seismic hazard assessment for PNG using the OpenQuake software developed by the Global Earthquake Model Foundation (Pagani et al. 2014). Among other enhancements, for the first time together with background sources, individual fault sources are implemented to represent active major and microplate boundaries in the region to better constrain the earthquake-rate and seismic-source models. The seismic-source model also models intraslab, Wadati–Benioff zone seismicity in a more realistic way using a continuous slab volume to constrain the finite ruptures of such events. The results suggest a high level of hazard in the coastal areas of the Huon Peninsula and the New Britain – Bougainville region, and a relatively low level of hazard in the southwestern part of mainland PNG. In comparison with the seismic zonation map in the current design standard, it can be noted that the spatial distribution of seismic hazard used for building design does not match the bedrock hazard distribution of this study. In particular, the high seismic hazard of the Huon Peninsula in the revised assessment is not captured in the current building code of PNG. <b>Citation:</b> Ghasemi, H., Cummins, P., Weatherill, G. <i>et al.</i> Seismotectonic model and probabilistic seismic hazard assessment for Papua New Guinea. <i>Bull Earthquake Eng, </i><b>18</b>, 6571–6605 (2020). https://doi.org/10.1007/s10518-020-00966-1

  • Knowledge of the nature of buildings within business precincts is fundamental to a broad range of decision making processes, including planning, emergency management and the mitigation of the impact of natural hazards. To support these activities, Geoscience Australia has developed a building information system called the National Exposure Information System (NEXIS) which provides information on buildings across Australia. Most of the building level information in NEXIS is statistically derived, but efforts are being made to include more detailed information on the nature of individual buildings, particularly in business districts. This is being achieved in Southbank through field survey work.

  • When multiple earthquakes occur within a short period of time, damage may accumulate in a building, affecting its ability to withstand future ground shaking. This study aims to quantify the post-earthquake capacity of a nonductile 4-story concrete building in New Zealand through incremental dynamic analysis of a nonlinear multipledegree-of-freedom simulation model. Analysis results are used to compute fragility curves for the intact and damaged buildings, showing that extensive damage reduces the structure’s capacity to resist seismic collapse by almost 30% percent. The damage experienced by the building in mainshock, can be compared with the ATC-20 building tagging criteria for post-earthquake inspections, the purpose of which is to ensure public safety. Extensively damaged buildings, which are likely be red tagged, pose a significant safety hazard due to decreased strength in future earthquakes. The effect of mainshock damage is also compared for multiple and simplified single-degree-of-freedom models of the same building.

  • <b> This service will be decommissioned on 10/10/2024. The replacement service (with changes) is located at https://services.ga.gov.au/gis/rest/services/NEXIS_Residential_Dwelling_Density_v15/MapServer/</b> NEXIS (National Exposure Information System) Residential Dwelling Density web service is a set of four raster layers representing the density of residential dwellings across Australia at different scales and resolutions.

  • Indonesia is located in one of the most seismically active regions in the world and often experiences damaging earthquakes. In the past the housing sector has sustained more damage and losses than other sectors due to earthquakes. This is often attributed to the fact that the most common houses in Indonesia are non-engineered, built with poor quality workmanship, poor quality materials and without resilient seismic design features. However little effort has been made to quantify how fragile these houses are, or how the fragility of these houses may vary according to location or wealth. It is not possible to derive empirical fragility functions for Indonesia due to insufficient damage data. The aim of this study is to determine whether existing earthquake fragility functions can be used for common houses in Indonesia. Scenario damage analyses were undertaken several times using different sets of fragility functions for the 2006 Yogyakarta and 2009 Padang events. The simulated damage results were then compared to the damage observed post event to determine whether an accurate damage prediction could be achieved. It was found that the common houses in Yogyakarta and Central Java vary according to age, location and wealth and can be reasonably well represented by existing fragility functions. However, the houses in Padang and surrounding West Sumatra did not vary in a predictable manner and are more fragile than anticipated. Therefore, the fragility of the most common houses in Indonesia is not uniform across the country. This has important implications for seismic damage and risk assessment undertaken in Indonesia. <b>Citation:</b> Weber, R., Cummins, P. & Edwards, M. Fragility of Indonesian houses: scenario damage analysis of the 2006 Yogyakarta and 2009 Padang earthquakes. <i>Bull Earthquake Eng</i> (2024). https://doi.org/10.1007/s10518-024-01930-z

  • This web service shows areas or locations occupied by an existing high-density urban development or known individual building structures in peri-urban and remote locations. Data used in this service is of varying levels of coverage and quality since it is aggregated from a variety of sources. The intended purpose of the service is to provide preliminary, first-pass information about urban environment, building structures and their distribution in landscape, as one of constraints on future development. Users should carry out further and more detailed investigations because this information is not meant to be a definitive source or support engineering phase planning. The service has layer scale dependencies.

  • The National Seismic Hazard Assessment (NSHA) is a flagship Geoscience Australia product, used to support the decisions of the Australian Building Codes Board Standards Subcommittee BD-006-11, to ensure buildings and infrastructure are built to withstand seismic events in Australia. The NSHA has been updated in 2018 and includes significant advances on previous assessments including: inclusion of epistemic uncertainty using third-party source models contributed by the Australian seismology community, use of modern ground-motion models, and more. As a consequence of these advances, estimates of seismic hazard have decreased significantly across most Australian localities at the return period (of earthquake ground shaking) currently used by the Australian Standard. The objective of this document is to outline the significant changes to the NSHA18 from the 2012 version, and the science behind these changes. The responses were developed through feedback and consultation with experts in the seismic and engineering industry. If you have additional questions, please contact the project team at hazards@ga.gov.au.

  • Geoscience Australia is the Australian Government advisor on the geology and geography of Australia, and develops the National Seismic Hazard Assessment (NSHA). The NSHA defines the level of earthquake ground shaking across Australia that has a likelihood of being exceeded in a given time period. Knowing how the ground-shaking hazard varies across Australia allows high hazard areas to be identified for the development of mitigation strategies so communities can be more resilient to earthquake events. The NSHA provides key information to the Australian Government Building Codes Board, so buildings and infrastructure design standards can be updated to ensure they can withstand earthquake events in Australia. Using the NSHA, decision makers can better consider: • What this could mean for communities in those areas and whether any further action is required • Where to prioritise further efforts • What this could mean for insurance and reinsurance premiums • Identify high and low hazard areas to plan for growth or investment in infrastructure

  • Report is result of a rapid geological reconnaissance of the Federal Territory made primarily to locate deposits of limestone and shale, suitable for the manufacture of Portland cement, and other materials likely to be of value in the building of the Federal City.

  • <b> This service will be decommissioned on 10/10/2024. The replacement service (with changes) is located at https://services.ga.gov.au/gis/rest/services/NEXIS_Residential_Dwelling_Density_v15/MapServer/</b> NEXIS (National Exposure Information System) Residential Dwelling Density web service is a set of four raster layers representing the density of residential dwellings across Australia at different scales and resolutions.