From 1 - 10 / 95
  • The Primary Coastal Sediment Compartment data set represents a regional-scale (1:250 000 - 1:100 000) compartmentalisation of the Australian coastal zone into spatial units within (and between) which sediment movement processes are considered to be significant at scales relevant to coastal management. The Primary and accompanying Secondary Coastal Sediment Compartment data sets were created by a panel of coastal science experts who developed a series of broader scale data sets (Coastal Realms, Regions and Divisions) in order to hierarchically subdivide the coastal zone on the basis of key environmental attributes. Once the regional (1:250 000) scale was reached expert knowledge of coastal geomorphology and processes was used to further refine the sub-division and create both the Primary and Secondary Sediment Compartment data sets. Environmental factors determining the occurrence and extents of these compartments include major geological structures, major geomorphic process boundaries, orientation of the coastline and recurring patterns of landform and geology - these attributes are given in priority order below. 1 - Gross lithological/geological changes (e.g. transition from sedimentary to igneous rocks). 2 - Geomorphic (topographic) features characterising a compartment boundary (often bedrock-controlled) (e.g. peninsulas, headlands, cliffs). 3 - Dominant landform types (e.g. large cuspate foreland, tombolos and extensive sandy beaches versus headland-bound pocket beaches). 4 - Changes in the orientation (aspect) of the shoreline.

  • This context report is for the Upper Darling River Floodplain module, which represents the easternmost ‘arm’ of the Exploring for the Future Darling-Curnamona-Delamerian project area within New South Wales. The document provides a summarised state of knowledge regarding the geography, geology, hydrology, hydrogeology and water management of the Upper Darling region. It provides baseline information relevant to understanding the regional context of water resources, with relevance to forward planning and prioritisation of further investigations. As such, this report largely represents a collation of existing information (literature review) for the Upper Darling region, with limited new information (e.g., airborne electromagnetic survey results, preliminary review of existing bore data) being presented.

  • Wind multipliers are factors that transform wind speeds over open, flat terrain (regional wind speeds) to local wind speeds that consider the effects of direction, terrain (surface roughness), shielding (buildings and structures) and topography (hills and ridges). During the assessment of local wind hazards (spatial significance in the order 10's of metres), wind multipliers allow for regional wind speeds (order 10 to 100's of kilometres) to be factored to provide local wind speeds. <b>Value: </b>The wind multiplier data is used in modelling the impacts (i.e. physical damage) of wind-related events such as tropical cyclones (an input for Tropical Cyclone Risk assessment), thunderstorms and other windstorms. <b>Scope: </b>Includes terrain, shielding and topographic multipliers for national coverage. Each multiplier further contains 8 directions.

  • This job was part of the Coastal capture program. It captures from the 10m contour interval to the coastline in the east. To the north are the Nowra job and the Batemans Bay job to the south.

  • This job is part of the Town capture program as prioritized by the SES

  • The Exploring for the Future program Virtual Roadshow was held on 7 July and 14-17 July 2020. The Minerals session of the roadshow was held on 14 July 2020 and consisted of the following presentations: Introduction - Richard Blewett Preamble - Karol Kzarnota Surface & Basins or Cover - Marie-Aude Bonnardot Crust - Kathryn Waltenberg Mantle - Marcus Haynes Zinc on the edge: New insights into sediment-hosted base metals mineral system - David Huston Scale reduction targeting for Iron-Oxide-Copper-Gold in Tennant Creek and Mt Isa - Anthony Schofield and Andrew Clark Economic Fairways and Wrap-up - Karol Czarnota

  • This web service contains a selection of remotely sensed raster products used in the Exploring for the Future (EFTF) East Kimberley Groundwater Project. Selected products were derived from LiDAR, Landsat (5, 7, and 8), and Sentinel-2 data. Datasets include: 1) mosaic 5 m digital elevation model (DEM) with shaded relief; 2) vegetation structure stratum and substratum classes; 3) Normalised Difference Vegetation Index (NDVI) 20th, 50th, and 80th percentiles; 4) Tasselled Cap exceedance summaries; 5) Normalised Difference Moisture Index (NDMI) and Normalised Difference Wetness Index (NDWI). Landsat spectral reflectance products can be used to highlight land cover characteristics such as brightness, greenness and wetness, and vegetation condition; Sentinel-2 datasets help to detect vegetation moisture stress or waterlogging; LiDAR datasets providing a five meter DEM and vegetation structure stratum classes for detailed analysis of vegetation and relief.

  • Wetlands around the world provide crucial ecosystem services and are under increasing pressure from multiple sources including climate change, changing flow and flooding regimes, and encroaching human populations. The Landsat satellite imagery archive provides a unique observational record of how wetlands have responded to these impacts during the last three decades. Information stored within this archive has historically been difficult to access due to its petabyte-scale and the challenges in converting Earth observation data into biophysical measurements that can be interpreted by wetland ecologists and catchment managers. This paper introduces the Wetlands Insight Tool (WIT), a workflow that generates WIT plots that present a multidecadal view of the biophysical cover types contained within individual Australian wetlands. The WIT workflow summarises Earth observation data over 35 years at 30 m resolution within a user-defined wetland boundary to produce a time-series plot (WIT plot) of the percentage of the wetland covered by open water, areas of water mixed with vegetation (‘wet’), green vegetation, dry vegetation, and bare soil. We compare these WIT plots with documented changes that have occurred in floodplain shrublands, alpine peat wetlands, and lacustrine and palustrine wetlands, demonstrating the power of satellite observations to supplement ground-based data collection in a diverse range of wetland types. The use of WIT plots to observe and manage wetlands enables improved evidence-based decision making. <b>Citation:</b> Dunn, B., Ai, E., Alger, M.J. et al. Wetlands Insight Tool: Characterising the Surface Water and Vegetation Cover Dynamics of Individual Wetlands Using Multidecadal Landsat Satellite Data. <i>Wetlands</i><b> 43</b>, 37 (2023). https://doi.org/10.1007/s13157-023-01682-7

  • The Environmental Attributes Database is a set of lookup tables supplying attributes describing the natural and anthropogenic characteristics of the stream and catchment environment that was developed by the Australian National University (ANU) in 2011 and updated in 2012. The data is supplied as part of the supplementary Geofabric products which is associated with the 9 second DEM derived streams and the National Catchment Boundaries based on 250k scale stream network. Please consult the spreadsheet below for details of the attributes and their source data. Version 1.1.5 corrects an error in the connectivity.lut table where the field ARTFBARIER for a subset of records did not correctly flag the presence of an artificial barrier up or downstream of the stream segment.

  • <p>The outcrop extent of the McBride Basalt Province, selected from the Queensland Detailed Surface Geology vector polygon mapping, March 2017. <p>© State of Queensland (Department of Natural Resources and Mines) 2017 Creative Commons Attribution