EFTF
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
This web service delivers metadata for onshore active and passive seismic surveys conducted across the Australian continent by Geoscience Australia and its collaborative partners. For active seismic this metadata includes survey header data, line location and positional information, and the energy source type and parameters used to acquire the seismic line data. For passive seismic this metadata includes information about station name and location, start and end dates, operators and instruments. The metadata are maintained in Geoscience Australia's onshore active seismic and passive seismic database, which is being added to as new surveys are undertaken. Links to datasets, reports and other publications for the seismic surveys are provided in the metadata.
-
The Layered Geology of Australia web map service is a seamless national coverage of Australia’s surface and subsurface geology. Geology concealed under younger cover units are mapped by effectively removing the overlying stratigraphy (Liu et al., 2015). This dataset is a layered product and comprises five chronostratigraphic time slices: Cenozoic, Mesozoic, Paleozoic, Neoproterozoic, and Pre-Neoproterozoic. As an example, the Mesozoic time slice (or layer) shows Mesozoic age geology that would be present if all Cenozoic units were removed. The Pre-Neoproterozoic time slice shows what would be visible if all Neoproterozoic, Paleozoic, Mesozoic, and Cenozoic units were removed. The Cenozoic time slice layer for the national dataset was extracted from Raymond et al., 2012. Surface Geology of Australia, 1:1 000 000 scale, 2012 edition. Geoscience Australia, Canberra.
-
Source rock geochemistry of the McArthur Basin, Northern Australia: Rock-Eval pyrolysis data release
As part of the Exploring for the Future Programme this study aims to improve our understanding of the petroleum resource potential of Northern Australia. As a component or this project, collaboration between the Onshore Energy Branch, Geoscience Australia and the Northern Territory Geological Survey (NTGS) is designed to produce pre-competitive information to assist with the evaluation of the petroleum prospectivity of onshore Northern Territory basins. This report characterises the organic richness, kerogen type and thermal maturity of source rocks in the Velkerri, Barney Creek, Wollogorang and McDermott formations of the McArthur Basin based on Rock-Eval pyrolysis data analysed at Geoscience Australia in the 2017 to 2018 financial year. This data is provided in preparation for future work to generate statistics quantifying the spatial distribution, quantity and quality of McArthur Basin source rocks, providing important insights into the hydrocarbon prospectivity of the basin.
-
This web service delivers metadata for onshore active and passive seismic surveys conducted across the Australian continent by Geoscience Australia and its collaborative partners. For active seismic this metadata includes survey header data, line location and positional information, and the energy source type and parameters used to acquire the seismic line data. For passive seismic this metadata includes information about station name and location, start and end dates, operators and instruments. The metadata are maintained in Geoscience Australia's onshore active seismic and passive seismic database, which is being added to as new surveys are undertaken. Links to datasets, reports and other publications for the seismic surveys are provided in the metadata.
-
Geoscience Australia is planning a deep crustal reflection seismic survey in South Australia, New South Wales and Victoria as part of the Exploring for the Future program
-
Presentation from the Exploring for the Future Roadshow on the Energy prospectivity of the South Nicholson region, regional geochemical data acquisition and shale gas prospectivity analysis.
-
Borehole induction conductivity (IC) and gamma logging are geophysical techniques that provide bulk electrical conductivity and natural gamma trends of geological formations. The measured unit of IC is millisiemens per metre, whereas natural gamma is either counts per second or American Petroleum Index (API). The data were acquired as part of the Exploring for the Future program at field sites within the East Kimberley area in Western Australia, and the northern and southern Stuart Corridor projects in the Northern Territory. Data may be downloaded as Log ASCII Standard (LAS) format files or viewed through the Geoscience Australia Portal, or accessed via Geoscience Australia’s WMS and WFS web services.
-
Geoscience Australia, in collaboration with Mineral Resources Tasmania, will be carrying out an airborne magnetic and radiometric survey in eastern Tasmania during 2022. The survey is part of the Australian Government’s Exploring for the Future program, which is committed to supporting a strong economy, resilient society and sustainable environment for the benefit of Australians. At its heart, the program is about contributing to a sustainable, long-term future for Australia through an improved understanding of the nation’s mineral, energy and groundwater resource potential. <p>
-
The Western Davenport region has been identified as an area of interest for future agricultural development. However, realisation of this potential depends on access to a reliable supply of groundwater, underpinned by rigorous geological and groundwater information. A three-dimensional stratigraphic model has been created for the Western Davenport area of the Southern Stuart Corridor project under the Exploring for the Future program. Our interpretation integrates airborne electromagnetic data with historical drillhole and outcrop data to improve geological and hydrogeological understanding. Results show that stratigraphies of the Wiso and Georgina basins are equivalent and laterally continuous in this area. This enables a more complete hydrostratigraphy to be defined and underpins improved hydrogeological conceptualisation. New hydrochemical data support the conceptual model that the aquifers of the Wiso and Georgina basins are interconnected at a regional scale. The initial assessment of water quality indicates that groundwater may support further agricultural development. Analysis of new water chemistry data has improved understanding of groundwater processes and potential areas of recharge. This work will inform management decisions to enhance the economic and social opportunities in the Western Davenport area, while protecting the environmental and cultural value of water resources. <b>Citation:</b> Northey, J.E., Clark, A.D., Smith, M.L. and Hostetler, S., 2020. Delineation of geology and groundwater resources in a frontier region: Western Davenport, Northern Territory. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
Geological maps are one of the most important datasets used in resource exploration and management. Despite increasing demand for subsurface resources such as minerals, groundwater and energy, maps of the inferred subsurface geology of Australia and other continents have been limited to small regions or jurisdictions. Here, we present the first seamless semi-continental chronostratigraphic solid geology dataset of the North Australian Craton. This dataset comprises five time slices of stratigraphic units: Cenozoic, Mesozoic, Paleozoic, Neoproterozoic and pre-Neoproterozoic. Interpretation of covered units is based on available data: surface geology and solid geology maps, magnetic intensity and gravity images, drilling logs, reflection seismic profiles and airborne electromagnetic soundings. In total, 2008 units have been mapped, all linked to the Australian Stratigraphic Units Database. So far, these maps have led to a refinement of sedimentary basin and tectonic province outlines, lessened the risks of mineral exploration through Australia’s extensive superficial cover, disclosed geological units known to host resources elsewhere, and highlighted undercover regions with poor geological constraints. <b>Citation:</b> Stewart, A.J., Liu, S.F., Bonnardot, M.-A., Highet, L.M., Woods, M., Brown, C., Czarnota, K. and Connors, K., 2020. Seamless chronostratigraphic solid geology of the North Australian Craton. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.