From 1 - 10 / 33
  • This resource includes bathymetry data acquired during the Visioning the Coral Sea Marine Park bathymetry survey using Kongsberg EM302 and EM710 multibeam sonar systems. Visioning the Coral Sea Marine Park bathymetry survey (FK200429/GA4861) was led by Dr. Rob Beaman (James Cook University) and a team of scientists from Geoscience Australia, The University of Sydney, and the Queensland Museum, aboard the Schmidt Ocean Institute’s research vessel Falkor, from the 29th of April to 11th of June 2020. The primary objective of the survey was to map in detail the Queensland Plateau, including the steeper reef flanks and target the enigmatic seabed features, like the numerous drowned reef pinnacles and long meandering channels on the plateau surface. The second objective of this survey was to investigate the extent of the bleaching on the mesophotic or deeper reef, and if these reefs could act as a potential refuge for the Great Barrier Reef. The survey also aimed at providing insights into the geological evolution and biodiversity of Australia’s marine frontier. This dataset is not to be used for navigational purposes. This dataset is published with the permission of the CEO, Geoscience Australia.

  • This dataset describes the seabed morphological features of an area in the South-west Corner Marine Park. The area is within the National Park Zone and adjacent Special Purpose Zone of the Capes region of the marine park. Multibeam bathymetry data of the area was collected during March 2020 and January-February 2021 by Geoscience Australia. The seabed morphological features of the area were mapped using semi-automatic seabed morphology mapping ArcGIS python tools developed by Geoscience Australia. As the result of the mapping, this dataset contains five bathymetric high features: Bank, Cone, Hummock, Mound and Ridge, and one morphology surface feature: Plane, defined in Dove et al. (2020). Dove, D., Nanson, R., Bjarnadóttir, L., Guinan, J., Gafeira, J., Post, A., Dolan, M.; Stewart, H.; Arosio, R, Scott, G. (October, 2020). A two-part seabed geomorphology classification scheme (v.2); Part 1: morphology features glossary. Zenodo. http://doi.org/10.5281/zenodo.4075248

  • Established in 2018, AusSeabed is a collaborative national seabed mapping initiative focused on delivering freely accessible seabed mapping data and coordinating efforts to map the gaps across the Australian maritime region of responsibility. AusSeabed is driven by a cross-sector steering committee bringing together organisations from the government, academia and private sectors to ensure an inclusive and diverse representation of the seabed mapping community. The Annual Highlights Report presents the key achievements of the AusSeabed program over the 2021/22 financial year. The report is structured in five sections, the first four are aligned to the 2021/22 work plan objectives and the fifth highlights engagement activities over the past year.

  • A benthic sediment sampling survey (GA0356) to the nearshore areas of outer Darwin Harbour was undertaken in the period from 03 July to 14 September 2016. Partners involved in the survey included Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and the Department of Environment and Natural Resources within the Northern Territory Government (NT DENR) (formerly the Department of Land and Resource Management (DLRM)). This survey forms part of a four year (2014-2018) science program aimed at improving knowledge about the marine environments in the regions around Darwin and Bynoe Harbour’s through the collection and collation of baseline data that will enable the creation of thematic habitat maps to underpin marine resource management decisions. This project is being led by the Northern Territory Government and is supported by the INPEX-led Ichthys LNG Project, in collaboration with - and co-investment from GA and AIMS. The program builds upon an NT Government project (2011-2011) which saw the collection of baseline data (multibeam echosounder data, sediment samples and video transects) from inner Darwin Harbour (Siwabessy et al. 2015). This dataset comprises porosity and chlorin measurements (concentrations and indices) on seabed sediments. Radke, L., Smit, N., Li, J., Nicholas, T., Picard, K. 2017. Outer Darwin Harbour Shallow Water Sediment Survey 2016: GA0356 – Post-survey report. Record 2017/06. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2017.006 This research was funded by the INPEX-led Ichthys LNG Project via the Northern Territory (NT) Government Department of Land Resource Management (DLRM) (now the Department of Environment and Natural Resources (DENR)), and co-investment from Geoscience Australia (GA) and Australian Institute of Marine Science (AIMS). We are grateful to the following agencies for providing boats and staff, and to the following personal for help with sample acquisition: NT DENR (Danny Low Choy and Rachel Groome), NT Fisheries (Wayne Baldwin, Quentin Allsop, Shane Penny, Chris Errily, Sean Fitzpatrick and Mark Grubert), NT Parks and Wildlife (Ray Chatto, Stewart Weorle, and Luke McLaren) and the Larrakia Rangers (Nelson Tinoco, Kyle Lewfat, Alan Mummery and Steven Dawson). Special thanks to the skippers Danny Low Choy, Wayne Baldwin, Stewart Weorle and Luke McLaren whose seamanship strongly guided the execution of this survey. AIMS generously allowed use of the aquarium and laboratory at the Arafura Timor Sea Research Facility, and Simon Harries and Kirsty McAllister helped with the setup. We would also like to acknowledge and thank GA colleagues including: Matt Carey, Ian Atkinson and Craig Wintle (Engineering and Applied Scientific Services) for the organisation of field supplies and the design of the new core incubation set-up. This dataset is published with the permission of the CEO, Geoscience Australia

  • <b>This record was superseded on 11/11/2022 with approval from Director, National Seabed Mapping as it has been superseded by eCat 147191</b> Seabed mapping data collected using a Kongsberg 2040C multibeam sonar system aboard research vessel MVYolla including bathymetry (2 metre resolution), backscatter (1metre resolution), watercolumn and preliminary hard bottom classification. Seabed mapping in Apollo Marine Park with 114 square kilometres of continuous seabed mapping conducted by Deakin University in partnership with iXblue for Parks Australia.

  • The extent to which low-frequency sound from marine seismic surveys impacts marine fauna is a subject of growing concern. The predominant frequency range of seismic airgun emissions is within the hearing range of cetaceans, reptiles, and fishes, and it can also elicit a neurological response in some invertebrates. Offshore seismic surveys have long been considered to be disruptive to fisheries, but comparatively few studies target commercially important species in realistic exposure scenarios. One of the main challenges in underwater sound impact studies is the meaningful translation of laboratory results to the field. Underwater sound properties are affected by the sound source, as well as characteristics of the water column, substrate, and biological communities. The experimental set-up is also critical in determining accurate response measurements, and design features of holding tanks can lead to misinterpretation of results, particularly related to behaviour. It may be tempting to simplify laboratory results to show effect or no effect, where results should instead be interpreted in the context of realistic exposure scenarios and field conditions. This project was developed in response to concerns raised by the fishing industry during stakeholder consultation in the lead up to a proposed seismic survey in the Gippsland Basin (Victoria, Australia), in addition to a broader need to acquire baseline data that may be used to quantify potential impacts of seismic operations on marine organisms. The project involves seven experimental components conducted before, during and after the seismic survey in both control and experimental areas of the Gippsland Basin: 1) Theoretical noise modelling, 2) Field-based noise monitoring and modelling, 3) Image acquisition by Autonomous Underwater Vehicle (AUV), 4) Bivalve sampling by dredging, 5) Fish movement analysis by tagging, 6) Catch rate analysis, and 7) Environmental modelling during the 2010 mortality event. In this presentation, we describe these components and critically review our current understanding of low-frequency sound impact on marine fish and invertebrates.

  • A benthic sediment sampling survey (GA0356) to the nearshore areas of outer Darwin Harbour was undertaken in the period from 03 July to 14 September 2016. Partners involved in the survey included Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and the Department of Environment and Natural Resources within the Northern Territory Government (NT DENR) (formerly the Department of Land and Resource Management (DLRM)). This survey forms part of a four year (2014-2018) science program aimed at improving knowledge about the marine environments in the regions around Darwin and Bynoe Harbour’s through the collection and collation of baseline data that will enable the creation of thematic habitat maps to underpin marine resource management decisions. This project is being led by the Northern Territory Government and is supported by the INPEX-led Ichthys LNG Project, in collaboration with - and co-investment from GA and AIMS. The program builds upon an NT Government project (2011-2011) which saw the collection of baseline data (multibeam echosounder data, sediment samples and video transects) from inner Darwin Harbour (Siwabessy et al. 2015). This dataset comprises Total sediment metabolism, %carbonate, organic isotope (C and N) and organic and inorganic element data from seabed sediments. Radke, L., Smit, N., Li, J., Nicholas, T., Picard, K. 2017. Outer Darwin Harbour Shallow Water Sediment Survey 2016: GA0356 – Post-survey report. Record 2017/06. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2017.006 This research was funded by the INPEX-led Ichthys LNG Project via the Northern Territory (NT) Government Department of Land Resource Management (DLRM) (now the Department of Environment and Natural Resources (DENR)), and co-investment from Geoscience Australia (GA) and Australian Institute of Marine Science (AIMS). We are grateful to the following agencies for providing boats and staff, and to the following personal for help with sample acquisition: NT DENR (Danny Low Choy and Rachel Groome), NT Fisheries (Wayne Baldwin, Quentin Allsop, Shane Penny, Chris Errily, Sean Fitzpatrick and Mark Grubert), NT Parks and Wildlife (Ray Chatto, Stewart Weorle, and Luke McLaren) and the Larrakia Rangers (Nelson Tinoco, Kyle Lewfat, Alan Mummery and Steven Dawson). Special thanks to the skippers Danny Low Choy, Wayne Baldwin, Stewart Weorle and Luke McLaren whose seamanship strongly guided the execution of this survey. AIMS generously allowed use of the aquarium and laboratory at the Arafura Timor Sea Research Facility, and Simon Harries and Kirsty McAllister helped with the setup. We would also like to acknowledge and thank GA colleagues including: Matt Carey, Ian Atkinson and Craig Wintle (Engineering and Applied Scientific Services) for the organisation of field supplies and the design of the new core incubation set-up. This dataset is published with the permission of the CEO, Geoscience Australia

  • A benthic sediment sampling survey (GA0356) to the nearshore areas of outer Darwin Harbour was undertaken in the period from 03 July to 14 September 2016. Partners involved in the survey included Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and the Department of Environment and Natural Resources within the Northern Territory Government (NT DENR) (formerly the Department of Land and Resource Management (DLRM)). This survey forms part of a four year (2014-2018) science program aimed at improving knowledge about the marine environments in the regions around Darwin and Bynoe Harbour’s through the collection and collation of baseline data that will enable the creation of thematic habitat maps to underpin marine resource management decisions. This project is being led by the Northern Territory Government and is supported by the INPEX-led Ichthys LNG Project, in collaboration with - and co-investment from GA and AIMS. The program builds upon an NT Government project (2011-2011) which saw the collection of baseline data (multibeam echosounder data, sediment samples and video transects) from inner Darwin Harbour (Siwabessy et al. 2015). This dataset comprises sediment oxygen demand measurements on seabed sediments. Radke, L., Smit, N., Li, J., Nicholas, T., Picard, K. 2017. Outer Darwin Harbour Shallow Water Sediment Survey 2016: GA0356 – Post-survey report. Record 2017/06. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2017.006 This research was funded by the INPEX-led Ichthys LNG Project via the Northern Territory (NT) Government Department of Land Resource Management (DLRM) (now the Department of Environment and Natural Resources (DENR)), and co-investment from Geoscience Australia (GA) and Australian Institute of Marine Science (AIMS). We are grateful to the following agencies for providing boats and staff, and to the following personal for help with sample acquisition: NT DENR (Danny Low Choy and Rachel Groome), NT Fisheries (Wayne Baldwin, Quentin Allsop, Shane Penny, Chris Errily, Sean Fitzpatrick and Mark Grubert), NT Parks and Wildlife (Ray Chatto, Stewart Weorle, and Luke McLaren) and the Larrakia Rangers (Nelson Tinoco, Kyle Lewfat, Alan Mummery and Steven Dawson). Special thanks to the skippers Danny Low Choy, Wayne Baldwin, Stewart Weorle and Luke McLaren whose seamanship strongly guided the execution of this survey. AIMS generously allowed use of the aquarium and laboratory at the Arafura Timor Sea Research Facility, and Simon Harries and Kirsty McAllister helped with the setup. We would also like to acknowledge and thank GA colleagues including: Matt Carey, Ian Atkinson and Craig Wintle (Engineering and Applied Scientific Services) for the organisation of field supplies and the design of the new core incubation set-up. This dataset is published with the permission of the CEO, Geoscience Australia

  • This ESRI map (web) service contains geospatial seabed morphology and geomorphology information for Cairns Seamount within the Coral Sea Marine Park and are intended for use by marine park managers, regulators, the general public and other stakeholders. This web service uses the data product published in McNeil et al. (2023); eCat Record 147998.

  • This ESRI map (web) service contains geospatial seabed morphology and geomorphology information for Flinders Reefs within the Coral Sea Marine Park and are intended for use by marine park managers, regulators, the general public and other stakeholders. This web service uses the data product published in McNeil et al. (2023); eCat Record 147998.