From 1 - 10 / 23
  • Survey conducted by the Commonwealth Government or State/Territory Geological Survey (or equivalent) collecting airborne geophysical data

  • Survey conducted by the Commonwealth Government or State/Territory Geological Survey (or equivalent) collecting airborne geophysical data

  • Survey conducted by the Commonwealth Government or State/Territory Geological Survey (or equivalent) collecting airborne geophysical data

  • This service provides Estimates of Geological and Geophysical Surfaces (EGGS). The data comes from cover thickness models based on magnetic, airborne electromagnetic and borehole measurements of the depth of stratigraphic and chronostratigraphic surfaces and boundaries.

  • This service provides Estimates of Geological and Geophysical Surfaces (EGGS). The data comes from cover thickness models based on magnetic, airborne electromagnetic and borehole measurements of the depth of stratigraphic and chronostratigraphic surfaces and boundaries.

  • NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-Basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1100 m of Proterozoic sedimentary rocks uncomformably overlain by 630 m of Cambrian Georgina Basin carbonates. A comprehensive geochemical program designed to provide information about the region’s resource potential was carried out on samples collected at up to 4 meter intervals. This report presents data from magnetic susceptibility analyses undertaken by Geoscience Australia on selected rock samples to establish their ability to be magnetised in an applied external magnetic field.

  • <div>This document defines the technical standards set by Geoscience Australia for the acquisition, processing and supply of airborne magnetic, horizontal magnetic gradient and radiometric (gamma-ray spectrometric) data. The technical standards cover the requirements for equipment, calibrations, quality control checks, reporting and data formats for airborne surveys.</div><div><br></div><div><br></div><div><strong>Table of Contents</strong></div><div><br></div><div>Attachment 1A – Data Acquisition and Processing</div><div><br></div><div>1 Aircraft</div><div>2 Flight and Tie Lines</div><div>3 Global Navigation Satellite System (GNSS)</div><div>4 Parallax Correction</div><div>5 Altimeter</div><div>6 Barometer</div><div>7 Digital Elevation Model</div><div>8 Magnetic System Equipment</div><div>9 Magnetic Gradient System Equipment</div><div>10 Magnetic / Gradient Calibration and Quality Tolerances</div><div>11 Magnetic Base Station (Diurnal Monitoring)</div><div>12 Magnetic Data Reduction</div><div>13 Magnetic Gradient Data Reduction</div><div>14 Radiometric System Equipment</div><div>15 Radiometric Calibration and Quality Tolerances</div><div>16 Radiometric Data Reduction</div><div><br></div><div>Attachment 1B – Reporting and Data Supply</div><div><br></div><div>1 General</div><div>2 Calibration Report</div><div>3 Daily Acquisition Report</div><div>4 Weekly Acquisition Report</div><div>5 Operations and Processing Summary Report</div><div>6 Supply Schedule</div><div><br></div><div>Attachment 1C – Data Formats</div><div><br></div><div>1 General</div><div>2 Point-Located Data Files</div><div>3 Definition Files</div><div>4 Description Files</div><div>5 Raw-Edited Magnetic Data File</div><div>6 Reduced Magnetic Data File</div><div>7 Diurnal Magnetic Data File</div><div>8 Raw-Edited Magnetic Gradient Data File</div><div>9 Reduced Magnetic Gradiometry Data File</div><div>10 Raw-Edited Radiometric Data File</div><div>11 Reduced Radiometric Data File</div><div>12 Gridded Data Files</div><div>13 Image Enhanced GeoTIFF Files

  • The Geological Survey of South Australia (GSSA) designed the Gawler Craton Airborne Survey (GCAS) to provide high resolution magnetic, gamma-ray and elevation data covering the northern portion of the Gawler Craton. In total, 1.66 million line km were planned over an area of 295,000 km2 , covering approximately 30% of the state of South Australia. The survey design of 200 m spaced lines at a ground clearance of 60 m can be compared with the design of existing regional surveys which generally employed 400 m line spacing and a ground clearance of 80 m. The new survey design results in ~2 x the data coverage and ~25% closer to the ground when compared to previous standards for regional surveys in South Australia. Due to the enormous scale of the survey, the data were acquired using four contractors who employed ten systems to fly the sixteen blocks. To standardise the data from the multitude of systems, Geoscience Australia (GA) employed a comprehensive set of technical specifications. As part of these specifications the contractors were required to fly each of the ten systems over a series of test lines termed the “Whyalla Test Lines” (Whyalla). The final GCAS data provide truly impressive high resolution regional scale products. These will allow more detailed geological interpretation of the prospective Gawler Craton. Survey blocks available for download include: Tallaringa North, block 1A Tallaringa South, block 1B Coober Pedy West, block 8A Billa Kalina, block 8B Childara, block 9A Lake Eyre, block 10 The following grids are available in this download: • Laser-derived digital elevation model grids (m). Height relative to the Australian Height Datum. • Radar-derived digital elevation model grids (m). Height relative to the Australian Height Datum. • Total magnetic intensity grid (nT). • Total magnetic intensity grid with variable reduction to the pole applied (nT). • Total magnetic intensity grid with variable reduction to the pole and first vertical derivative applied (nT/m). • Dose rate concentration grid (nGy/hr). • Potassium concentration grid (%). • Thorium concentration grid (ppm). • Uranium concentration grid (ppm). • NASVD processed dose rate concentration grid (nGy/hr). • NASVD processed potassium concentration grid (%). • NASVD processed thorium concentration grid (ppm). • NASVD processed uranium concentration grid (ppm). The following point located data are available in this download: • Elevation. Height relative to the Australian Height Datum. Datum: GDA94 • Total Magnetic Intensity. Datum: GDA94 • Radiometrics. Datum: GDA94

  • Data accompanying the GA Record Regional geology and mineral systems of the Stavely region, western Victoria. Data release 6 - Pre-drilling geophysics. Prior to stratigraphic drilling, existing airborne magnetic data were analysed and new refraction seismic, reflection seismic and gravity data were acquired as part of a pre-drilling geophysical acquisition program. The aim of this geophysical program was to provide cover thickness estimates at the drill site locations prior to the drilling program commencing, in order to reduce the geological and financial risk. Passive seismic data were acquired post-drilling for benchmarking with the other methods against the completed drilling in order to assess a potential tool kit of geophysical methods for the explorer to predict reliably the cover thickness at the tenement scale. This is the first study where multiple geophysical methods are applied to the same site and where full drill core, downhole wireline logging and hyperspectral (HyLogger) data are freely available.

  • <div>Geoscience Australia (GA), in collaboration with the New South Wales (NSW) Government’s Geological Survey of NSW, undertook a horizontal magnetic gradient and radiometric survey in the Yathong area of NSW. This survey was fully funded by the NSW Government as part of a project to find deep groundwater for use in times of drought.</div><div><br></div><div>Survey Name: Yathong</div><div>Datasets Acquired: Horizontal Magnetic Gradient, Radiometrics, and Elevation</div><div>Geoscience Australia Project Number: P5023</div><div>Acquisition Start Date: 21/05/2023</div><div>Acquisition End Date: 14/09/2023</div><div>Flight line spacing: 200 m</div><div>Flight line direction: East-West (090-270 degrees)</div><div>Total distance flown: 65,503.75 line-km's</div><div>Nominal terrain clearance: 80 m</div><div>Data Acquisition: Magspec Airborne Surveys Pty Ltd</div><div>Project Management: Geoscience Australia</div><div>Quality Control: Geoscience Australia</div><div>Dataset Ownership: Geological Survey of New South Wales</div><div>Datum: Geocentric Datum of Australia 2020 (GDA2020)</div><div>Projection: Map Grid of Australia Zone 55 (MGA55)</div><div><br></div><div>Included in this release:</div><div><br></div><div>1. Point-located Data - ASCII-column (.dat) and NetCDF (.nc) format.</div><div>• Magnetic diurnal;</div><div>• Magnetic gradient raw-edited;</div><div>• Magnetic gradient reduced;</div><div>• Radiometrics raw-edited;</div><div>• Radiometrics reduced.</div><div><br></div><div>2. Gridded data - ERMapper (.ers) format.</div><div>• Gradient enhanced Total Magnetic Intensity (TMI);</div><div>• Gradient enhanced TMI Reduced to Pole (RTP);</div><div>• Gradient enhanced TMI RTP with First Vertical Derivative (1VD);</div><div>• Dose rate (with NASVD and standard processing);</div><div>• Potassium concentration (with NASVD, standard processing);</div><div>• Thorium concentration (with NASVD, standard processing);</div><div>• Uranium concentration (with NASVD, standard processing);</div><div>• Radar-derived digital elevation model (geoidal).</div><div><br></div><div>3. Reports.</div><div>• Calibration report;</div><div>• Operations and processing summary report.</div>