Magnetics
Type of resources
Keywords
Publication year
Topics
-
<p>The Exploring for the Future (EFTF) initiative aims to reduce the technical risk of mineral exploration by providing pre-competitive data and information to support investment and mineral exploration in northern Australia – a key part of ensuring Australia's future economic prosperity. <p>To support the EFTF initiative, the presence of hydrothermal alteration systems associated with iron oxide copper-gold (IOCG) deposits were estimated throughout the Tennant Creek -– Mt Isa Project area of northern Australia. These zones are of economic interest due to their potential to host copper, gold, uranium and rare earth element mineralisation. <p>To predict the presence of IOCG-related alteration, gravity and magnetic intensity data were used to produce 3D models of density and magnetic susceptibility, respectively. The inversion models provide an indication of the volume and distribution of these physical properties within the subsurface and were used to define volumes with relatively high densities and high magnetic susceptibilities as proxies for magnetite-rich alteration and volumes with high density, but low magnetic susceptibility, as proxies for hematite-rich alteration. <p>Contact zones between these two sets of volumes are considered to be the most favourable areas for potential IOCG mineralisation. However, the inversion modelling inevitably will have mapped a number of ‘false positives’, which will require more detailed inversion modelling and/or other data sets to discriminate these from true IOCG-related alteration.
-
<p>The Geological Survey of South Australia commissioned the Gawler Craton Airborne Survey (GCAS) as part of the PACE Copper initiative. The airborne geophysical survey was flown over parts of the Gawler Craton in South Australia. The program was designed to capture new baseline geoscientific data to provide further information on the geological context and setting of the area for mineral systems (http://energymining.sa.gov.au/minerals/geoscience/pace_copper/gawler_craton_airborne_survey). <p>The survey design of 200 m spaced lines at a ground clearance of 60 m can be compared with the design of previous regional surveys which generally employed 400 m line spacing and a ground clearance of 80 m. The new survey design results in ~2 x the data coverage and ~25% closer to the ground when compared to previous standards for regional surveys in South Australia. <p>Survey blocks available for download include: <p>Streaky Bay, block 5 <p>Gairdner, block 6A <p>Spencer, block 7 <p>Kingoonya, block 9B <p>The following grids are available in this download: <p>• Laser-derived digital elevation model grids (m). Height relative to the Australian Height Datum. <p>• Radar-derived digital elevation model grids (m). Height relative to the Australian Height Datum. <p>• Total magnetic intensity grid (nT). <p>• Total magnetic intensity grid with variable reduction to the pole applied (nT). <p>• Total magnetic intensity grid with variable reduction to the pole and first vertical derivative applied (nT/m). <p>• Dose rate concentration grid (nGy/hr). <p>• Potassium concentration grid (%). <p>• Thorium concentration grid (ppm). <p>• Uranium concentration grid (ppm). <p>• NASVD processed dose rate concentration grid (nGy/hr). <p>• NASVD processed potassium concentration grid (%). <p>• NASVD processed thorium concentration grid (ppm). <p>• NASVD processed uranium concentration grid (ppm). <p>The following point located data are available in this download: <p>• Elevation. Height relative to the Australian Height Datum. Datum: GDA94 <p>• Total Magnetic Intensity. Datum: GDA94 <p>• Radiometrics. Datum: GDA94
-
Several products were produced from the Total Magnetic Intensity (TMI) Grid of Australia 2019, seventh edition (eCat ID 131505). The grid was found to include 3 extreme, high-amplitude cultural data spikes from current and historical aluminium smelters in Victoria and Tasmania. Also, 3 data spikes of unknown origin were located in the Hunter region of NSW. These 6 data spikes were removed from the gridded data. The following products were produced from the grid with the data spikes removed: 1. Total Magnetic Intensity (TMI) edited grid (.ers) 2. Variable Reduction to Pole (VRTP) grid (.ers) 3. First Vertical Derivative (1VD) grid (.ers) 4. Half Vertical Derivative (05VD) grid (.ers) 5. Pseudo-Gravity (PGrav) grid (.ers) 6. Pseudo-Gravity, Total Horizontal Derivative (THD) grid (.ers) 7. Susceptibility (Sus) grid (.ers) 8. Variable Vertical Gradient (VBzz) grid (.ers) 9. Analytic Signal (AS; Total Gradient) grid (.ers) 10. Tilt Angle (Tilt; Phase Map) grid (.ers) 11. Tilt Angle (Tilt; Phase Map), Total Horizontal Derivative (THD) grid (.ers) 12. Upward Continuation (UC) Residual (Res) Filters (0 to 100 km; 12 grids) 13. Mutliscale Edge Detection Polygons (for each MGA zone; .shp) 14. Analytic Signal Phase Polygons (.shp) 15. GeoTiff Images (of all grids; .tif)
-
Geoscience Australia is the custodian of the most comprehensive publicly available Australian airborne magnetic, gamma-ray, seismic, electromagnetic and gravity data sets. The airborne geophysics data set contains approximately 34 million line kilometres of data, which, at current prices, would cost approximately $197 million to acquire. The gravity data set contains more than 1.57 million reliable onshore stations gathered during more than 1800 surveys. The collection also includes a large number of seismic surveys from Australia's offshore basins. The onshore component of this data set was previously approved for RDSI for 8 TB. This proposal extends the collection to 150TB. The data types and access methods for the Offshore and Onshore data are identical Certain holdings are additionally hosted at the NCI (see downloads)
-
The Geological Survey of South Australia (GSSA) designed the Gawler Craton Airborne Survey (GCAS) to provide high resolution magnetic, gamma-ray and elevation data covering the northern portion of the Gawler Craton. In total, 1.66 million line km were planned over an area of 295,000 km2 , covering approximately 30% of the state of South Australia. The survey design of 200 m spaced lines at a ground clearance of 60 m can be compared with the design of existing regional surveys which generally employed 400 m line spacing and a ground clearance of 80 m. The new survey design results in ~2 x the data coverage and ~25% closer to the ground when compared to previous standards for regional surveys in South Australia. Due to the enormous scale of the survey, the data were acquired using four contractors who employed ten systems to fly the sixteen blocks. To standardise the data from the multitude of systems, Geoscience Australia (GA) employed a comprehensive set of technical specifications. As part of these specifications the contractors were required to fly each of the ten systems over a series of test lines termed the “Whyalla Test Lines” (Whyalla). The final GCAS data provide truly impressive high resolution regional scale products. These will allow more detailed geological interpretation of the prospective Gawler Craton. Survey blocks available for download include: Tallaringa North, block 1A Tallaringa South, block 1B Coober Pedy West, block 8A Billa Kalina, block 8B Childara, block 9A Lake Eyre, block 10 The following grids are available in this download: • Laser-derived digital elevation model grids (m). Height relative to the Australian Height Datum. • Radar-derived digital elevation model grids (m). Height relative to the Australian Height Datum. • Total magnetic intensity grid (nT). • Total magnetic intensity grid with variable reduction to the pole applied (nT). • Total magnetic intensity grid with variable reduction to the pole and first vertical derivative applied (nT/m). • Dose rate concentration grid (nGy/hr). • Potassium concentration grid (%). • Thorium concentration grid (ppm). • Uranium concentration grid (ppm). • NASVD processed dose rate concentration grid (nGy/hr). • NASVD processed potassium concentration grid (%). • NASVD processed thorium concentration grid (ppm). • NASVD processed uranium concentration grid (ppm). The following point located data are available in this download: • Elevation. Height relative to the Australian Height Datum. Datum: GDA94 • Total Magnetic Intensity. Datum: GDA94 • Radiometrics. Datum: GDA94
-
<div>As part of the Australia's Resources Framework Project, in the Exploring for the Future Program, Geoscience Australia and CSIRO have undertaken a magnetic source depth study across four areas. These are: 1) the western part of Tasmania that is the southernmost extension of the Darling-Curnamona-Delamerian (DCD) project area; 2) northeastern Queensland; 3) the Officer Basin area of western South Australia and southeastern West Australia; and 4) the 'Eastern Resources Corridor' (ERC) covering eastern South Australia, southwest Queensland, western New South Wales and western Victoria. This study has produced 2005 magnetic estimates of depth to the top of magnetization. The solutions are derived by a consistent methodology (targeted magnetic inversion modelling, or TMIM; also known as ‘sweet-spot’ modelling). </div><div><br></div><div>The magnetic depth estimates produced as part of this study provide depth constraints in data-poor areas. They help to construct a better understanding of the 3D geometry of the Australian continent, and aid cover thickness modelling activities. </div><div><br></div><div>A supplementary interpretation data release is also available through Geoscience Australia's enterprise catalogue (ecat) at https://pid.geoscience.gov.au/dataset/ga/149499.</div><div><br></div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. This work contributes to building a better understanding of the Australian continent, whilst giving the Australian public the tools they need to help them make informed decisions in their areas of interest.</div>
-
<div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. This work contributes to building a better understanding of the Australian continent, whilst giving the Australian public the tools they need to help them make informed decisions in their areas of interest.</div><div><br></div><div>As part of the Australia's Resources Framework Project, in the Exploring for the Future Program, Geoscience Australia and CSIRO undertook a magnetic source depth study across four areas, with the objectives of generating cover model constraints from magnetic modelling to expand national coverage, and to improve our subsurface understanding of these areas. During this study, 2005 magnetic estimates of depth to the top of magnetization were generated, with solutions derived using a consistent methodology (targeted magnetic inversion modelling, or TMIM; also known as ‘sweet-spot’ modelling). The methodology for these estimates are detailed in a summary report by Foss et al (2024), and is available for download through Geoscience Australia’s enterprise catalogue (https://pid.geoscience.gov.au/dataset/ga/149239). </div><div><br></div><div>The new points were generated over four areas: 1) the western part of Tasmania that is the southernmost extension of the Darling-Curnamona-Delamerian (DCD) project area; 2) northeastern Queensland; 3) the Officer Basin area of western South Australia and southeastern West Australia; and 4) the Eastern Resources Corridor (ERC), covering eastern South Australia, southwest Queensland, western New South Wales and western Victoria. These depth estimates have been released, together with a summary report detailing the data and methodology used to generate the results, through Geoscience Australia's product catalogue (ecat) at https://pid.geoscience.gov.au/dataset/ga/149239.</div><div><br></div><div>This supplementary data release contains the chronostratigraphic attribution of the new TMIM magnetic depth estimates, which range in depth from at surface to 13,294 m below ground. To ensure that the interpretations took into account the local geological features, the magnetic depth estimates were integrated and interpreted with other geological and geophysical datasets, including borehole stratigraphic logs, potential fields images, surface and solid geology maps, and airborne electromagnetic interpretations (where available). </div><div><br></div><div>Each depth-solution is interpretively ascribed to either a chronostratigraphic boundary with the stratigraphic units above and below the depth estimate, or the stratigraphic unit that the depth estimate occurs within, populated from the Australian Stratigraphic Units Database (ASUD). Stratigraphic attribution adds value and informs users of the depth to certain stratigraphic units in their areas of interest. Each solution is accompanied by confidence estimates. The depth estimate points are formatted for compliance with Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository for standardised depth estimate points. </div><div><br></div><div>Results from these interpretations provided some support to stratigraphic drillhole targeting, as part of the Delamerian Margins NSW National Drilling Initiative campaign, a collaboration between GA’s EFTF program, the MinEx CRC National Drilling Initiative and the Geological Survey of New South Wales. The magnetic depth-estimate solutions produced within this study provide important depth constraints in data-poor areas. These data help to construct a better understanding of the 3D geometry of the Australian continent and aid in cover thickness modelling activities. The availability of the depth-estimate solutions via the EGGS database through Geoscience Australia’s Portal creates enduring value to the public.</div>
-
<div>In July 2022 an airborne electromagnetic (AEM) survey was flown over and around the proposed site of the National Radioactive Waste Management Facility near the township of Kimba in South Australia. The survey was commissioned by the Australian Radioactive Waste Agency, and was project managed by Geoscience Australia. The survey has Geoscience Australia airborne survey project number P5008.</div><div><br></div><div>The survey was flown by Skytem Australia Pty Ltd using its SkyTEM312Fast AEM system. The survey was conducted on east-west lines at 500 m spacing, with a smaller central focus area of 100 m spaced lines, acquiring a total of 2,545 line kilometres of data. Skytem Australia Pty Ltd also processed the data.</div><div><br></div><div>This data package includes the acquisition and processing report, the final processed AEM data and the results of the 1D laterally constrained inversion of the data to conductivity-depth estimates that was carried out by the contractor.</div>
-
Over 8,200 line kilometres of gravity and magnetic data, acquired during the 2020 Otway Basin Seismic Program (OBSP), were combined with public domain survey and satellite data to produce seamless maps of the NW-SE trending deep-water Otway Basin. These data provide valuable information on the geometry and spatial extent of igneous rocks in the deep-water basin. While the top of basement can effectively be imaged from seismic reflection datasets onshore in the Otway Basin, it remains problematic in parts of the deep-water offshore region due to variable seismic data quality. Modelling of the magnetic line data provides an estimate of the depth to the top of basement, an important interface for understanding hydrocarbon prospectivity because it plays a key role in characterising the tectonic evolution of the basin, and thus the thermal maturation history of hydrocarbons. Magnetic modelling was performed using a profile-based curve matching technique producing a depth estimate to the top of the magnetic body that is assumed to be the top of the basement. However, this assumption is flawed where there are volcanic or igneous intra-sedimentary rocks in the basin, as is the case for the Otway Basin where the interpretation of seismic reflection data shows highly reflective events corresponding to igneous features. In most parts of the basin, the modelling results show two layers: a shallow layer (depths < 1000m) corresponding to near surface volcanics, and a deeper layer (depths > 1000m) attributed to the top of the magnetic basement. Magnetic basement shows some similarities with basement picked on seismic reflection data, though in some areas the magnetic basement is shallower. The results also show that the depth to basement is not well resolved in areas with abundant intra-sedimentary igneous rocks. Further investigation is needed in such areas. Presented at the 2024 Australian Society of Exploration Geophysicists (ASEG) Discover Symposium
-
<div>Geoscience Australia (GA), in collaboration with the New South Wales (NSW) Government’s Geological Survey of NSW, undertook a horizontal magnetic gradient and radiometric survey in the Yathong area of NSW. This survey was fully funded by the NSW Government as part of a project to find deep groundwater for use in times of drought.</div><div><br></div><div>Survey Name: Yathong</div><div>Datasets Acquired: Horizontal Magnetic Gradient, Radiometrics, and Elevation</div><div>Geoscience Australia Project Number: P5023</div><div>Acquisition Start Date: 21/05/2023</div><div>Acquisition End Date: 14/09/2023</div><div>Flight line spacing: 200 m</div><div>Flight line direction: East-West (090-270 degrees)</div><div>Total distance flown: 65,503.75 line-km's</div><div>Nominal terrain clearance: 80 m</div><div>Data Acquisition: Magspec Airborne Surveys Pty Ltd</div><div>Project Management: Geoscience Australia</div><div>Quality Control: Geoscience Australia</div><div>Dataset Ownership: Geological Survey of New South Wales</div><div>Datum: Geocentric Datum of Australia 2020 (GDA2020)</div><div>Projection: Map Grid of Australia Zone 55 (MGA55)</div><div><br></div><div>Included in this release:</div><div><br></div><div>1. Point-located Data - ASCII-column (.dat) and NetCDF (.nc) format.</div><div>• Magnetic diurnal;</div><div>• Magnetic gradient raw-edited;</div><div>• Magnetic gradient reduced;</div><div>• Radiometrics raw-edited;</div><div>• Radiometrics reduced.</div><div><br></div><div>2. Gridded data - ERMapper (.ers) format.</div><div>• Gradient enhanced Total Magnetic Intensity (TMI);</div><div>• Gradient enhanced TMI Reduced to Pole (RTP);</div><div>• Gradient enhanced TMI RTP with First Vertical Derivative (1VD);</div><div>• Dose rate (with NASVD and standard processing);</div><div>• Potassium concentration (with NASVD, standard processing);</div><div>• Thorium concentration (with NASVD, standard processing);</div><div>• Uranium concentration (with NASVD, standard processing);</div><div>• Radar-derived digital elevation model (geoidal).</div><div><br></div><div>3. Reports.</div><div>• Calibration report;</div><div>• Operations and processing summary report.</div>