From 1 - 10 / 69
  • A growing need to manage marine biodiversity sustainably at local, regional and global scales cannot be met by applying the limited existing biological data. Abiotic surrogates of biodiversity are thus increasingly valuable in filling the gaps in our knowledge of biodiversity patterns, especially identification of hotspots, habitats needed by endangered or commercially valuable species and systems or processes important to the sustained provision of ecosystem services. This review examines the use of abiotic variables as surrogates for patterns in benthic assemblages with particular regard to how variables are tied to processes affecting biodiversity and how easily those variables can be measured at scales relevant to resource management decisions.

  • Map showing all of Australia's Maritime Jurisdiction including external Territories and the AAT. One of the 27 constituent maps of the "Australia's Maritime Jurisdiction Map Series" (GeoCat 71789). Depicting Australia's extended continental shelf approved by the Commission on the Limits of the Continental Shelf in April 2008. Background bathymetry image is derived from a combination of the 2009 9 arc second bathymetry and topographic grid by Geoscience Australia and a grid by W.H.F. Smith and D.T. Sandwell, 1997. Background land imagery derived from Blue Marble, NASA's Earth Observatory. A0 sized .pdf downloadable from the web.

  • Map produced by LOSAMBA for ACMA showing approx position of the proposed PIPE International PPC-1 Sydney - Guam Cable, issue2 DRAFT of February 2008 and issue4 of July 2008, in relation to the EEZs and Continental Shelf claims of Australia and adjoining countries until the cable finally leaves Australian areas approx 300nm north of Mellish Reef. Also shows Sydney Protection Zones as very small areas on this very small scale map. Not for sale or distribution. Contains Commercial in Confidence data. For internal use by ACMA only.

  • This is a compilation of Seabed and Habitat Mapping Publications 2008 - 2010: GA Record 2008_20.pdf Vlaming Sub-Basin and Mentelle Basin: Environmental Summary GA Record 2008_23.pdf A Review of Spatial Interpolation Methods for Environmental Scientists GA Record 2009_02.pdf Carnarvon Shelf Survey Post-Survey Report GA Record 2009_09.pdf Ceduna Sub-basin: Environmental Summary GA Record 2009_10.pdf Mapping and characterising soft sediment habitats, and evaluating physical variables as surrogates of biodiversity in Jervis Bay, NSW GA Record 2009_12.pdf Temporal and fine-scale variation in the biogeochemistry of Jervis Bay GA Record 2009_13.pdf Review of Ten Key Ecological Features (KEFs) in the Northwest Marine Region GA Record 2009_22.pdf Seabed Environments and Subsurface Geology of the Capel and Faust basins and Gifford Guyot,Eastern Australia GA Record 2009_26.pdf Deep Sea Lebensspuren: Biological Features on the Seafloor of the Eastern and Western Australian Margin GA Record 2009_38.pdf Frontier basins of the west Australian continental margin: post-survey report of marine reconnaissance and geological sampling survey GA2476 GA Record 2009_42.pdf A Review of Surrogates for Marine Benthic Biodiversity GA Record 2009_43.pdf Southeast Tasmania Temperate Reef Survey Post-Survey Report GA Record 2010_09.pdf Seabed Environments of the Eastern Joseph Bonaparte Gulf, Northern Australia

  • The collection consists of seabed samples collected by Geoscience Australia and other organizations since the 1950s. Samples consist of various shallow cores types, rocks derived from dredging, and sea bed sediments collected by grab and dredge methods. A large proportion of samples are refrigerated.

  • Several gravity cores from the west (3), south (3) and east (5) Australian continental margin have been sampled and analysed for magnetic susceptibility, percent calcium carbonate, Fe203, Al203 and Si02 (% wt) and other trace element contents. Thecores sampled from the west Australian continental margin were from the Exmouth Plateau, and the Carnarvon Terrace. Sampling from the south Australian continental margin was from the west Ceduna Terrace and the Eyre Terrace and the cores sampled from the east Australian continental margin were collected offshore Evans Head. 8180 isotope data on planktonic foraminifera have been used to provide a chronological control on those cores collected from the western margin, to determine sediment accumulation rates and identify Late Quaternary isotopic stages, includingthe last glacial maximum (LGM) and the last interglacial (LIG). These same data are not available from other areas surveyed although sedimentation rates of about 1cm/kyr have been estimated from 14C data from the eastern continental margin sediments offshore Evans Head. The down-core total magnetic susceptibility profiles generally show similar patterns within each survey area. The magnetic susceptibility profiles for those cores from thewestern margin (Exmouth Plateau and Carnarvon Terrace) show relatively high valuesin the Holocene and around the LIG, and relatively low values during the LGM. Patterns of down-core variations in magnetic susceptibility could also be recognised in gravity cores from the eastern margin offshore Evans Head. Here, magnetic susceptibilities were relatively high around the LIG (similar to the western margin), but magnetic susceptibility were low in Holocene sediments, perhaps because of diagenetic remobilisation of iron in the core-tops. In general no distinct patterns are recognisable in the down-core magnetic susceptibility profiles from the southern margin. The down-core profiles of calcium carbonate from the west Australian continental margin show high values during the LGM, and minima in the Holocene and also during the LIG.Similarly, the down-core profile of calcium carbonate shows minimum values during the inferred LIG in eastern margin cores, although this interpretation is based on an approximate sedimentation rate. In general, total magnetic susceptibility is correlated with Al203, Si02 and Fe203, concentrations in sediments, indicating a control on magnetic susceptibility by terrigenous material contents. Calcium carbonate was found tobe a diluent for magnetic susceptibility in these continental margin sediments.

  • The benthic (sea floor) component of the National Marine Bioregionalisation covers the 80% of Australia's Exclusive Economic Zone that lies beyond the continental shelf break. It provides a description of patterns of biological distributions and physical habitats on the seafloor. The Benthic Bioregionalisation Report is a technical document describing how the benthic bioregions were created. It includes descriptions of all the datasets used, details of each bioregion, and examples of how the physical data may be used to sub-divide the marine bioregions for management. An evaluation of the benthic bioregionalisation including strengths, weaknesses and future work is also contained in the report.

  • Australia's near-pristine estuaries are some of our most valuable natural assets, with many natural and cultural heritage values. They are important as undisturbed habitat for native plants and animals, for biodiversity conservation, as Indigenous lands and for tourism. They also support near-shore fisheries. In addition, by studying near-pristine estuaries, scientists can learn more about the way humans have changed natural systems. This information then feeds into natural resource management because it constitutes benchmark or baseline information against which similar information from more modified estuaries can be compared.

  • Selected geomorphic features and sedimentary facies were mapped in 283 of Australia's wave- and tide-dominated estuaries and deltas to quantitatively evaluate established evolutionary facies models that depict the evolution of estuaries into deltas during stable sea level conditions. While diagnostic facies for wave- and tide-dominated estuaries and deltas approximate those specified by the models, statistical analyses of the data also reveal two additional insights regarding the evolution of estuaries to deltas. First, there is an offshore shift in the locus of sand accumulation between tide-dominated estuaries and deltas, associated with the onset of delta development. Second, the mean surface area of intertidal environments (i.e., intertidal flats, mangroves/melaleuca, saltmarsh/salt flat facies) is greater in wave-dominated deltas than in wave-dominated estuaries. Tidal penetration associated with the river establishing a more direct and permanent connection to the sea during late-stage development presents a natural impediment to continued formation of an alluvial plain and full development of the 'classic' wave-dominated delta morphology. A notional evolutionary pathway for wave-dominated estuaries is developed from the distribution of facies that predicts the rate and susceptibility of geomorphic and habitat changes. The 'classic' deltaic geomorphology may be unattainable for wave-dominated systems, except those with significant terrigenous sediment inputs. Our study is the first published example of geomorphic and sedimentary data assembled from a large number of wave- and tide-dominated estuaries and deltas across an entire continent.

  • Hydrogeological map data for research and analysis applications, most commonly in GIS systems. Georeferenced, attributed, GIS vector format data of hydrogeological map information at all scales.