From 1 - 10 / 310
  • Geoscience Australia has been updating its collection of navigation for marine surveys in Australia. These include original navigation files, the 2003 SNIP navigation files and survey track maps along with survey acquisition reports. The result will be an updated cleansed navigation collection. The collection is based on the standard P190 extended header navigation file which follows the UKOOA standard. Industry standard metadata associated with a seismic survey is preserved. To assist industry, Geoscience Australia is making available its updated version of cleansed navigation. Although the process of updating the navigation data is ongoing and there is still legacy data to check, the navigation data is at point where a significant improvement has been achieved and it is now usable. Users should be aware that this navigation is not final and there may be errors. The KML file can be viewed using a range of applications including Google Earth, NASA WorldWind, ESRI ArcGIS Explorer, Adobe PhotoShop, AutoCAD3D or any other earth browser (geobrowser) that accepts KML formatted data. Alternatively the Shapefiles can be downloaded and viewed using any application that supports shape files.

  • The Jervis Bay Multibeam 2 survey, was acquired by Geoscience Australia after the purchase of the new shallow bathymetry acquisition systems Kongsberg EM3002D. This system is a mobile and compact system that can be installed on different vessels. This survey was acquired by the DSTO vessel, RV Kimbla during the 31st of May to the 5 of June 2008. The survey location was in Jervis Bay. The aim of the survey was to test the new bathymetry acquisition system and to acquire geophysical data on the shallow water (less than 100m water depth) seabed environment. The bathymetry grids are of 1m resolution projected in Easting and Northing WGS84 UTM 56S

  • The local Moran I grid calculates local autocorrelation of the bathymetry grid. It indicates local heterogeneity. The large and positive values represent positive autocorrelation or clumped pattern; the large negative values represent negative autocorrelation or checkerboard pattern; the values close to zero represent random local pattern. The grid was created from the bathymetry grid of Darwin Harbour. Please see the metadata of the bathymetry grid for details (GeoCat no: 74915).

  • This dataset contains the Sediment sample data collected on Geoscience Australia Survey 273. The survey took place in central Torres Strait during October 2004 on the RV James Kirby. sample collected on this survey include Vibro Cores, Push Cores, Van Veen Grabs and suspended soilds from water samples. This dataset has been processed and archived within Geoscience Australia's Seabed Mapping and Characteristion Project in Canberra. Data can been accessed via the Geoscience Australia Marine Samples (MARS) database. Additional information regarding this dataset is contained in the Survey report. Biophysical Processes in theTorres Strait Marine Esosystem II. Survey Results and review of activites in responce to CRC objectives. Geoscience Australia Record 2006/10.

  • This is the list for the GEN category 'Oceans and Sea Regions'. It has been developed to support the GEN element of the ANZLIC Metadata Guidelines and forms part of the GEN Register. The list contains the names and the Miniumum Bounding Box (MBB) coordinates for all oceans and sea regions around Australia.

  • The WA Margins Reconnaissance survey, GA-2476 was acquired during October 2008 to January 2009 onboard the RV Sonne as part of the Energy Security Program. Almost 230,000 km² of multibeam bathymetry was acquired over the duration of the survey including all transits. Seafloor features revealed by the backscatter and swath bathymetry have shown that geomorphology of the study areas is diverse. The continental slope of the west Australian margin study areas is characterised by large areas with numerous deeply incised canyons and areas with low-angle slumps and scarps mostly on the upper part of the slope. Other geomorphic features on the continental slope include short escarpments of local extent and small volcanic peaks over the Houtman Sub-basin part of the Perth margin. New bathymetry from the Cuvier Plateau has mapped large volcanic domes, some of them with terraces, ridges, a large previously unmapped valley and two large seamounts (newly named the Cuvier Seamount and the Wallaby seamount). The dataset contains eight XYZ grids of 100m resolution; colour tiff images shaded with sun azimuth 45 degrees and a geotiff of the entire survey with a depth legend to go with the images.<p><p>This dataset is not to be used for navigational purposes.

  • A bathymetric survey of Darwin Harbour was undertaken during the period 24 June to 20 August 2011 by iXSurvey Australia Pty Ltd for the Department of Natural Resources, Environment, The Arts and Sport (NRETAS) in collaboration with Geoscience Australia (GA), the Darwin Port Corporation (DPC) and the Australian Institute of Marine Science (AIMS) using GA's Kongsberg EM3002D multibeam sonar system and DPC's vessel 'Matthew Flinders'.

  • The Petrel Sub-basin Marine Environmental Survey GA-0335 was acquired by the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between Geoscience Australia and the Australian Institute of Marine Science (AIMS) . The purpose was to acquire geophysical and biophysical data on shallow (less than 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas.<p><p>This dataset is not to be used for navigational purposes.

  • Geoscience Australia conducted a marine survey (GA-0345 andGA-0346 /TAN1411) in Commonwealth waters of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014. The purpose of the survey was to collect pre-competitive marine data to support a CO2 storage assessment in the Browse Basin, with particular emphasis on the integrity of seals overlying select CO2 storage plays. Data acquisition was undertaken as part of the National CO2 Infrastructure Plan (NCIP), administered by the Department of Industry and Science. The survey was conducted in 3 Legs aboard the New Geoscience Australia (GA) conducted a marine survey (GA0345/GA0346/TAN1411) of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014 to acquire seabed and shallow geological information to support an assessment of the CO2 storage potential of the basin. The survey, undertaken as part of the Department of Industry and Science's National CO2 Infrastructure Plan (NCIP), aimed to identify and characterise indicators of natural hydrocarbon or fluid seepage that may indicate compromised seal integrity in the region. The survey was conducted in three legs aboard the New Zealand research vessel RV Tangaroa, and included scientists and technical staff from GA, the NZ National Institute of Water and Atmospheric Research Ltd. (NIWA) and Fugro Survey Pty Ltd. Shipboard data (survey ID GA0345) collected included multibeam sonar bathymetry and backscatter over 12 areas (A1, A2, A3, A4, A6b, A7, A8, B1, C1, C2b, F1, M1) totalling 455 km2 in water depths ranging from 90 - 430 m, and 611 km of sub-bottom profile lines. Seabed samples were collected from 48 stations and included 99 Smith-McIntyre grabs and 41 piston cores. An Autonomous Underwater Vehicle (AUV) (survey ID GA0346) collected higher-resolution multibeam sonar bathymetry and backscatter data, totalling 7.7 km2, along with 71 line km of side scan sonar, underwater camera and sub-bottom profile data. Twenty two Remotely Operated Vehicle (ROV) missions collected 31 hours of underwater video, 657 still images, eight grabs and one core. This catalogue entry refers to bathymetry data acquired during survey GA0345/GA0346/TAN1411.

  • In September and October of 2011 Geoscience Australia surveyed part of the offshore northern Perth Basin in order to map potential sites of natural hydrocarbon seepage. The primary objectives of the survey were to map the spatial distribution of seepage sites and characterise the nature of the seepage at these sites (gas vs oil, macroseepage vs microseepage; palaeo vs modern day seepage) on the basis of: acoustic signatures in the water column, shallow subsurface and on the seabed; geochemical signatures in rock and sediment samples and the water column; and biological signatures on the seabed. Areas of potential natural hydrocarbon seepage that were surveyed included proven (drilled) oil and gas accumulations, a breached structure, undrilled hydrocarbon prospects, and areas with potential signatures of fluid seepage identified in seismic, satellite remote sensing and multibeam bathymetry data. Within each of these areas the survey acquired: water column measurements with the CTD; acoustic data with single- and multi-beam echosounders, sidescan sonar and sub-bottom profiler (sidescan not acquired in Area F as it was too deep in places); and sediment and biological samples with the Smith-McIntyre Grab. In addition, data were collected with a remotely operated vehicle (ROV), integrated hydrocarbon sensor array, and CO2 sensor in selected areas. Sampling with the gravity corer had limited success in many of the more shallow areas (A-E) due to the coarse sandy nature of the seabed sediments. This dataset comprises mineraology of the upper 2 cm of seabed sediment. The minerals include quartz, calcite and aragonite. Data are also provided on the mol% of Mg calcite.