From 1 - 10 / 119
  • Regolith carbonate or secondary carbonate is a key component of the regolith, particularly in many Mediterranean, arid and semi-arid regions of Australia. National maps of regolith carbonate distribution have been compiled from regional soil, regolith and geological mapping with varying degrees of confidence and consistency. Here we apply a decision tree approach based on a piecewise linear regression model to estimate and map the near-surface regolith carbonate concentration at the continental scale. The model is based on relationships established from the 1311 field sites of the National Geochemical Survey of Australia (NGSA) and 49 national environmental covariate datasets. Regolith carbonate concentration (weight %) was averaged from the <2 mm grain size-fractions of samples taken from two depth ranges (0-10 cm and ~60-80 cm) at each NGSA site. The final model is based on the average of 20 runs generated by randomly selecting 90% training and 10% validation splits of the input data. Results present an average coefficient of determination (R2) of 0.56 on the validation dataset. The covariates used in the prediction are consistent with our understanding of the controls on the sources (inputs), preservation and distribution of regolith carbonate within the Australian landscape. The model produces a continuous, quantitative prediction of regolith carbonate abundance in surficial regolith at a resolution of 90 m with associated estimates of model uncertainty. The model-derived map is broadly consistent with our current knowledge of the distribution of carbonate-rich soil and regolith in Australia. This methodology allows the rapid generation of an internally consistent and continuous layer of geoinformation that may be applicable to other carbonate-rich landscapes globally. The methodology used in this study has the potential to be used in predicting other geochemical constituents of the regolith.

  • The Georgina Basin is a Neoproterozoic-Paleozoic basin that spans parts of the Northern Territory and Queensland in northern Australia. The basin is prospective for petroleum, phosphate and base metals (copper, lead and zinc). The Dulcie and Toko synclines in the southern part of the basin are prospective for petroleum, where a thick Cambro-Ordovician succession of marine carbonates hosts several source rocks and associated oil and gas shows. The key source rock units occur within the middle Cambrian Narpa Group including both the Thorntonia Limestone (Series 2 and 3) and the Arthur Creek Formation (Series 3). This presentation provides new geochemical insights into the understanding of the petroleum systems effective in the Dulcie and Toko synclines.

  • In the 50 years since the first commercial discovery in 1965 at Barracouta-1, and 46 years since production commenced from the Barracouta field, a total of 16.5 TCF of gas, 4026 MMbbl of oil, 385 MMbbl of condensate and 752 MMbbl of LPG have been found in the Gippsland Basin (Estimated Ultimate Recovery, as at the end of 2012). Despite these extensive resources, all from CretaceousPaleogene Latrobe Group reservoirs, there are questions regarding the effective petroleum systems, contributing source rock units, and the migration pathways between source and reservoir. Resolution of these uncertainties is essential to improve our understanding of the remaining prospectivity and for creating new exploration opportunities, particularly in the eastern, less explored part of the basin, but also for mitigating risk for the potential sequestration of carbon dioxide along the southern and western flanks. Geochemical fingerprinting of reservoir fluids has identified that the oil and gas originate from multiple sources. The most pervasive hydrocarbon charge into the largely produced fields overlying the Central Deep has a terrestrial source affinity, originating from lower coastal plain facies (Kingfish, Halibut, Mackerel), yet the oils cannot be correlated using source-related biomarker parameters to source rocks either within the Halibut Subgroup (F. longus biozone) at Volador-1, one of the deepest penetrations of the Upper Cretaceous section, or to older sections, penetrated on the flanks of the basin. However, within the underlying SantonianCampanian Golden Beach Subgroup an oil-source correlation has been established between the Anemone-1A oil and the marginal marine Anemone Formation (N. senectus biozone) at Anemone-1/1A and Archer-1. A similar correlation is indicated for the Angler-1 condensate to the Chimaera Formation (T. lilliei biozone) in the deepest section at Volador-1 and Hermes-1. In the Longtom field, gas reservoired within the Turonian Emperor Subgroup, potentially has a source from either the lacustrine Kipper Shale or the Albian portion of the Strzelecki Group. The molecular and carbon isotopic signatures of oil and gas from the onshore Wombat field are most similar to hydrocarbons sourced from the AptianAlbian Eumeralla Formation in the Otway Basin, also implicating a Strzelecki source in the Gippsland Basin. These results imply that sediments older than the Paleocene are significant sources of petroleum within the basin.

  • The Congararra 1 borehole was drilled approximately 70 km NNW of Bourke, NSW. The borehole was designed to test aeromagnetic anomalies in the basement rocks, test the electrical conductivity properties of cover and basement rocks to validate airborne electromagnetic (AEM) data, and to test pre-drilling geophysical cover thickness estimates.

  • This resource contains a predicted 13C isotope grid for the greater Darwin Harbour region as part of a baseline seabed mapping program of Darwin Harbour and Bynoe Harbour. This project was funded through offset funds provided by an INPEX-led Ichthys LNG Project to the Northern Territory Government’s Department of Environment and Natural Resources (NTG-DENR) with co-investment from Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS). The intent of this program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps and information to underpin marine resource management decisions. The predicted 13C isotope grid was derived from a compilation of multiple surveys undertaken by GA, AIMS and NTG-DENR between 2011 and 2017, including GA0333 (Siwabessy et al., 2015), GA0341 (Siwabessy et al., 2015), GA0351/SOL6187 (Siwabessy et al., 2016), GA4452/SOL6432 (Siwabessy et al., 2017), GA0356 (Radke et al., 2017), and GA0358 and GA0359 (Radke et al., 2018), adding to those from previous surveys GA4425 and GA0333 collected by GA, AIMS, NTG-DENR and Darwin Port Authority.

  • This resource contains a predicted aluminium standard error grid for the greater Darwin Harbour region as part of a baseline seabed mapping program of Darwin Harbour and Bynoe Harbour. This project was funded through offset funds provided by an INPEX-led Ichthys LNG Project to the Northern Territory Government’s Department of Environment and Natural Resources (NTG-DENR) with co-investment from Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS). The intent of this program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps and information to underpin marine resource management decisions. The predicted aluminium standard error grid was derived from a compilation of multiple surveys undertaken by GA, AIMS and NTG-DENR between 2011 and 2017, including GA0333 (Siwabessy et al., 2015), GA0341 (Siwabessy et al., 2015), GA0351/SOL6187 (Siwabessy et al., 2016), GA4452/SOL6432 (Siwabessy et al., 2017), GA0356 (Radke et al., 2017), and GA0358 and GA0359 (Radke et al., 2018), adding to those from previous surveys GA4425 and GA0333 collected by GA, AIMS, NTG-DENR and Darwin Port Authority.

  • This resource contains a predicted total sediment metabolism grid for the greater Darwin Harbour region as part of a baseline seabed mapping program of Darwin Harbour and Bynoe Harbour. This project was funded through offset funds provided by an INPEX-led Ichthys LNG Project to the Northern Territory Government’s Department of Environment and Natural Resources (NTG-DENR) with co-investment from Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS). The intent of this program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps and information to underpin marine resource management decisions. The predicted total sediment metabolism grid was derived from a compilation of multiple surveys undertaken by GA, AIMS and NTG-DENR between 2011 and 2017, including GA0333 (Siwabessy et al., 2015), GA0341 (Siwabessy et al., 2015), GA0351/SOL6187 (Siwabessy et al., 2016), GA4452/SOL6432 (Siwabessy et al., 2017), GA0356 (Radke et al., 2017), and GA0358 and GA0359 (Radke et al., 2018), adding to those from previous surveys GA4425 and GA0333 collected by GA, AIMS, NTG-DENR and Darwin Port Authority.

  • This resource contains a predicted calcium carbonate content standard error grid for the greater Darwin Harbour region as part of a baseline seabed mapping program of Darwin Harbour and Bynoe Harbour. This project was funded through offset funds provided by an INPEX-led Ichthys LNG Project to the Northern Territory Government’s Department of Environment and Natural Resources (NTG-DENR) with co-investment from Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS). The intent of this program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps and information to underpin marine resource management decisions. The predicted calcium carbonate content standard error grid was derived from a compilation of multiple surveys undertaken by GA, AIMS and NTG-DENR between 2011 and 2017, including GA0333 (Siwabessy et al., 2015), GA0341 (Siwabessy et al., 2015), GA0351/SOL6187 (Siwabessy et al., 2016), GA4452/SOL6432 (Siwabessy et al., 2017), GA0356 (Radke et al., 2017), and GA0358 and GA0359 (Radke et al., 2018), adding to those from previous surveys GA4425 and GA0333 collected by GA, AIMS, NTG-DENR and Darwin Port Authority.

  • This web service delivers datasets produced by the Critical Minerals Mapping Initiative (CMMI), a collaboration between Geoscience Australia (GA), the Geological Survey of Canada (GSC) and the United States Geological Survey (USGS). Data in this service includes geochemical analyses of over 7000 samples collected from or near mineral deposits from 60 countries, and mineral prospectivity models for clastic-dominated (Zn, Pb) and Mississippi Valley-type (Zn-Pb) deposits across Canada, the United States, and Australia.

  • This web map service provides visualisations of the datasets used as inputs into the analysis of potential for tholeiitic intrusion-hosted Ni-Cu-PGE sulfide deposits in Australia, and the resulting outputs. The datasets included in this service cover the four mineral system components incorporated in the conceptual model for the formation of tholeiitic intrusion-hosted Ni-Cu-PGE sulfide deposits : (1) energy sources or drivers of the ore-forming system; (2) crustal and mantle lithospheric architecture; (3) sources of ore constituents (i.e., Ni, PGE, Cu, S in magmatic systems); and (4) gradients in ore depositional physico-chemical parameters. The results of the analysis are published in the report "Potential for intrusion-hosted Ni-Cu-PGE sulfide deposits in Australia: A continental-scale analysis of mineral system prospectivity. http://dx.doi.org/10.11636/Record.2016.001".