From 1 - 10 / 42
  • This is a CD rom that enables users to obtain relevant information on how to invest in mineral exploration within Australia.

  • Generic Geoscience Australia, web based, external database entry kit

  • Software to calculate the Australian Geomagnetic Reference Field, a regional geomagnetic field model for the Australian region for the period 1995 to 2005

  • The High Quality Geophysical Analysis (HiQGA) package is a fully-featured, Julia-language based open source framework for geophysical forward modelling, Bayesian inference, and deterministic imaging. A primary focus of the code is production inversion of airborne electromagnetic (AEM) data from a variety of acquisition systems. Adding custom AEM systems is simple using Julia’s multiple dispatch feature. For probabilistic spatial inference from geophysical data, only a misfit function needs to be supplied to the inference engine. For deterministic inversion, a linearisation of the forward operator (i.e., Jacobian) is also required. HiQGA is natively parallel, and inversions from a full day of production AEM acquisition can be inverted on thousands of CPUs within a few hours. This allows for quick assessment of the quality of the acquisition, and provides geological interpreters preliminary subsurface images of EM conductivity together with associated uncertainties. HiQGA inference is generic by design – allowing for the analysis of diverse geophysical data. Surface magnetic resonance (SMR) geophysics for subsurface water-content estimation is available as a HiQGA plugin through the SMRPInversion (SMR probabilistic inversion) wrapper. The results from AEM and/or SMR inversions are used to create images of the subsurface, which lead to the creation of geological models for a range of applications. These applications range from natural resource exploration to its management and conservation.

  • The gnssanalysis Python package is designed to provide the public with a source of useful python functions and classes that help with processing of GNSS observations. The functionality found within the package includes: - reading of many standard file formats commonly used in the geodetic community including SP3, SNX, RNX, CLK, PSD, etc. into pandas dataframes (Also writing certain file formats) - transformation of data, for example datetime conversions, helmert inversions, rotations, transforming geodata from XYZ to longitude-latitude-altitude, etc. - functions for the download of standard files and upload to other sources (e.g. s3)

  • Geoscience Australia's World Wind Viewer is an application developed using NASA's World Wind Java Software Development Kit (SDK) to display Australia's continental data sets. The viewer allows you to compare national data sets such as the radioelements, the gravity and magnetic anomalies, and other mapping layers, and show the data draped over the Australian terrain in three dimensions.

  • Program PRINSAS (PRocessing and INterpretation of Small Angle Scattering data) takes raw SANS, SAXS, USANS and USAXS data, stores the data, and allows the user to further process and interpret the data. Although any small angle scattering data can be accepted, PRINSAS has been specifically designed for the processing and interpretation of SAS data for rocks and other media with a wide distribution of scatterer sizes.