South Nicholson Basin
Type of resources
Keywords
Publication year
Service types
Topics
-
<p>This Record presents the results of 26 new zircon U-Pb isotopic analyses, conducted on Geoscience Australia’s Sensitive High Resolution Ion Micro Probe (SHRIMP2e), under the Commonwealth Government’s Exploring for the Future (EFTF) program, a $100.5 million, four year, initiative to better understand the mineral, energy and groundwater potential across northern Australia. <p>These new data, determined on sedimentary and volcanic rocks, were collected from across the South Nicholson region, located in the north-eastern Northern Territory. The South Nicholson region is geographically located between two highly prospective geological provinces, the greater McArthur Basin in the Northern Territory and the Mount Isa Province in Queensland, regions noted for their hydrocarbon potential and world-class base-metal endowment. <p>The South Nicholson region has been sparsely investigated by modern geological investigations, and, as such, these new SHRIMP U-Pb data, in concert with other complementary EFTF geochronological, geochemical and geophysical datasets from the region (e.g. Anderson et al., 2019; Carr et al., 2019; Ley-Cooper and Brodie, 2019; Jarrett et al., 2019) will place important geological constraints on the geological evolution, the timing of deposition, sedimentary processes, basin architecture and evolution of the South Nicholson region and, arguably most significantly, provide new improved lithostratigraphic and chronostratigraphic correlations with the adjacent highly prospective Proterozoic Basins. <p>Such geological correlations are critical for reducing exploration risk, improve resource prospectivity and enabling targeted ‘greenfield’ resource exploration activities, a tangible key objective under the Exploring for the Future initiative.
-
<p>In this study, a total of 53 surface outcrop samples were analysed for both inorganic and organic whole-rock geochemistry as part of Exploring for the Future (EFTF) program, a government initiative undertaken by the Australian Government to boost investment in resource exploration and development in northern Australia. The samples were collected during two EFTF funded field seasons conducted in May 2017 (18 samples, GA job number 33004) and May 2018 (35 samples, GA job number 33228). <p>This data release contains the results of elemental analyses including X-Ray Fluorescence (XRF), Inductively Coupled Plasma- Mass Spectrometry (ICP-MS), iron titration (FeO), Loss-On-Ignition (LOI) and Rock-Eval pyrolysis on 53 outcrop samples collected across two seasons of fieldwork in the South Nicholson region. This data release are provided to facilitate establishment of important baseline assessments and whole rock characterisation of regional sedimentary rocks for insight into the resource prospectivity of northern Australian basins. These data was generated at the Geochemistry Laboratories at Geoscience Australia as part of the Exploring for the Future program
-
This web service provides access to satellite imagery products for the identification of potential groundwater dependent ecosystems (GDEs) in the South Nicholson - Georgina region.
-
The structural evolution of the South Nicholson region is not well understood, hindering full appraisal of the resource potential across the region. Here, we outline new insights from a recent deep-reflection seismic survey, collected as part of the Australian Government’s Exploring for the Future initiative. The new seismic profiles, and new field observations and geochronology, indicate that the South Nicholson region was characterised by episodic development of a series of ENE-trending half grabens. These graben structures experienced two major episodes of extension, at ca. 1725 Ma and ca. 1640 Ma, broadly correlating with extensional events identified from the Lawn Hill Platform and the Mount Isa Province to the east. Southward stratal thickening of both Calvert and Isa Superbasin sequences (Paleoproterozoic Carrara Range and McNamara groups, respectively) into north-dipping bounding faults is consistent with syndepositional extension during half graben formation. Subsequent basin inversion, and reactivation of the half graben bounding faults as south-verging thrusts, appears to have been episodic. The observed geometry and offset are interpreted as the cumulative effect of multiple tectonic events, including the Isan Orogeny, with thrust movement on faults occurring until at least the Paleozoic Alice Springs Orogeny. <b>Citation:</b> Carson, C.J.. Henson, P.A., Doublier, M.P., Williams, B., Simmons, J., Hutton, L. and Close, D., 2020. Structural evolution of the South Nicholson region: insight from the 2017 L210 reflection seismic survey. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
This web service provides access to satellite imagery products for the identification of potential groundwater dependent ecosystems (GDEs) in the South Nicholson - Georgina region.
-
Zircon and xenotime U–Pb SHRIMP geochronology was conducted on samples from the South Nicholson Basin, and western Mount Isa Orogen. These samples were collected from outcrop and core from the Northern Territory and Queensland. The age data indicate the South Nicholson Basin was deposited after ca 1483 Ma but deposition most likely had ceased by ca 1266 Ma; the latter age likely represents post-diagenetic fluid flow in the area, based on U–Pb xenotime data. Geochronology presented here provides the first direct age data confirming the South Nicholson Group is broadly contemporaneous with the Roper Group of the McArthur Basin, which has identified facies with high hydrocarbon prospectivity. In addition, geochronology on the Paleoproterozoic McNamara Group provides new age constraints that have implications for the regional stratigraphy. The data obtained in this geochronological study allow for a comprehensive revision of the existing stratigraphic framework, new correlations and enhances commodity prospectivity in central northern Australia.
-
NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-Basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1120 m of Proterozoic sedimentary rocks unconformably overlain by 630 m of Cambrian Georgina Basin carbonates. Continuous cores recovered from 283 m to a total depth of 1750 m provide samples of the highest quality for a comprehensive geochemical program designed to inform on the energy and mineral prospectivity of the Carrara Sub-basin. Total Organic Carbon (TOC) contents from Rock-Eval pyrolysis of the Cambrian and Proterozoic sections demonstrate the potential for several thick black shales as source rocks and unconventional plays. Evidence for retained hydrocarbons included bituminous oil stains in centimetre-scale vugs within the Cambrian Georgina Basin and several oil bleeds within the Proterozoic section. The latter also contains surface gas with up to 2% methane concentrations measured within carbonaceous mudstones. Geochemical analyses of hydrocarbon shows highlight the occurrence of several petroleum systems operating in this frontier region. The results at NDI Carrara 1 offer the promise of a new exciting resource province in northern Australia.
-
<div>This dataset presents results of a first iteration of a 3D geological model across the Georgina Basin, Beetaloo Sub-basin of the greater McArthur Basin and South Nicholson Basin (Figure 1), completed as part of Geoscience Australia’s Exploring for the Future Program National Groundwater Systems (NGS) Project. These basins are located in a poorly exposed area between the prospective Mt Isa Province in western Queensland, the Warramunga Province in the Northern Territory, and the southern McArthur Basin to the north. These surrounding regions host major base metal or gold deposits, contain units prospective for energy resources, and hold significant groundwater resources. The Georgina Basin has the greatest potential for groundwater.</div><div> </div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. More information is available at http://www.ga.gov.au/eftf and https://www.eftf.ga.gov.au/national-groundwater-systems.</div><div> </div><div>This model builds on the work undertaken in regional projects across energy, minerals and groundwater aspects in a collection of data and interpretation completed from the first and second phases of the EFTF program. The geological and geophysical knowledge gathered for energy and minerals projects is used to refine understanding of groundwater systems in the region.</div><div> </div><div>In this study, we integrated interpretation of a subset of new regional-scale data, which include ~1,900 km of deep seismic reflection data and 60,000 line kilometres of AusAEM1 airborne electromagnetic survey, supplemented with stratigraphic interpretation from new drill holes undertaken as part of the National Drilling Initiative and review of legacy borehole information (Figure 2). A consistent chronostratigraphic framework (Figure 3) is used to collate the information in a 3D model allowing visualisation of stacked Cenozoic Karumba Basin, Mesozoic Carpentaria Basin, Neoproterozoic to Paleozoic Georgina Basin, Mesoproterozoic Roper Superbasin (including South Nicholson Basin and Beetaloo Sub-basin of the southern McArthur Basin), Paleoproterozoic Isa, Calvert and Leichhardt superbasins (including the pre-Mesoproterozoic stratigraphy of the southern McArthur Basin) and their potential connectivity. The 3D geological model (Figure 4) is used to inform the basin architecture that underpins groundwater conceptual models in the region, constrain aquifer attribution and groundwater flow divides. This interpretation refines a semi-continental geological framework, as input to national coverage databases and informs decision-making for exploration, groundwater resource management and resource impact assessments.</div><div><br></div><div>This metadata document is associated with a data package including:</div><div>· Nine surfaces (Table 1): 1-Digital elevation Model (Whiteway, 2009), 2-Base Cenozoic, 3-Base Mesozoic, 4-Base Neoproterozoic, 5-Base Roper Superbasin, 6-Base Isa Superbasin, 7-Base Calvert Superbasin, 8-Base Leichhardt Superbasin and 9-Basement.</div><div>· Eight isochores (Table 4): 1-Cenozoic sediments (Karumba Basin), 2-Mesozoic sediments (Carpentaria and Eromanga basins), 3-Paleozoic and Neoproterozoic sediments (Georgina Basin), 4-Mesoproterozoic sediments (Roper Superbasin including South Nicholson Basin and Beetaloo Sub-basin), 5-Paleoproterozoic Isa Superbasin, 6-Paleoproterozoic Calvert Superbasin, 7-Paleoproterozoic Leichhardt Superbasin and 8-Undifferentiated Paleoproterozoic above basement.</div><div>· Five confidence maps (Table 5) on the following stratigraphic surfaces: 1-Base Cenozoic sediments, 2-Base Mesozoic, 3-Base Neoproterozoic, 4-Base Roper Superbasin and 5-Combination of Base Isa Superbasin/Base Calvert Superbasin/Base Leichhardt Superbasin/Basement.</div><div>· Three section examples (Figure 4) with associated locations.</div><div>Two videos showing section profiles through the model in E-W and N-S orientation.</div>
-
Presentation from the Exploring for the Future Roadshow on the Energy prospectivity of the South Nicholson region, regional geochemical data acquisition and shale gas prospectivity analysis.
-
This web service provides access to satellite imagery products for the identification of potential groundwater dependent ecosystems (GDEs) in the South Nicholson - Georgina region.