Nulla Basalt
Type of resources
Keywords
Publication year
Service types
Topics
-
This web service provides access to groundwater raster products for the Upper Burdekin region, including: inferred relative groundwater recharge potential derived from weightings assigned to qualitative estimates of relative permeability based on mapped soil type and surface geology; Normalised Difference Vegetation Index (NDVI) used to map vegetation with potential access to groundwater in the basalt provinces, and; base surfaces of basalt inferred from sparse available data.
-
This web service provides access to groundwater raster products for the Upper Burdekin region, including: inferred relative groundwater recharge potential derived from weightings assigned to qualitative estimates of relative permeability based on mapped soil type and surface geology; Normalised Difference Vegetation Index (NDVI) used to map vegetation with potential access to groundwater in the basalt provinces, and; base surfaces of basalt inferred from sparse available data.
-
This dataset includes point estimates of groundwater recharge in mm/year. Recharge rates have been estimated at monitoring bore locations in the basaltic aquifers of the Nulla and McBride basalt provinces. Recharge estimates have been calculated using the “chloride mass balance” method. The chloride mass balance process assumes that the chloride ion is a conservative tracer in precipitation, evapotranspiration, recharge and runoff; and that all the chloride is from rainfall, instead of for example halite saturation or dissolution processes. So the volumetric water balance and the flux of chloride balance must both be true. Assuming that runoff and evapotranspiration are negligible (so approximated by zero), the equation is simplified: Water balance P=ET+R+Q Water balance multiplied by chloride concentrations (chloridefluxbalance) P∙Cl_ppt=ET∙Cl_ET+R∙Cl_gw+Q∙Cl_riv | ΔCl_reac≈0 Assumptions to simplify equation P∙Cl_ppt=R∙Cl_gw | Q≈0 & ET≈0 Rearranging for recharge rate (unknown) R=P∙(Cl_ppt)/(Cl_gw ) | Q≈0 & ET≈0 Where P = precipitation rate; ET = evapotranspiration rate; R = recharge rate; Q = runoff to streams; Clppt = concentration of Cl in precipitation; ClET = concentration of chloride in evapotranspiration; Clgw = concentration of Cl in groundwater; Clriv = concentration of chloride in river runoff; ΔClreac = change in chloride concentrations from reactions.
-
This report presents key results from the Upper Burdekin Groundwater Project conducted as part of Exploring for the Future (EFTF)—an eight year Australian Government funded geoscience data and information acquisition program. The first four years of the Program (2016–20) aimed to better understand the potential mineral, energy and groundwater resources in northern Australia. The Upper Burdekin Groundwater Project focused on the McBride Basalt Province (MBP) and Nulla Basalt Province (NBP) in the Upper Burdekin region of North Queensland. It was undertaken as a collaborative study between Geoscience Australia and the Queensland Government. This document reports the key findings of the project, as a synthesis of the hydrogeological investigation project and includes maps and figures to display the results.
-
This report presents key results of groundwater barometric response function development and interpretation from the Upper Burdekin Groundwater Project in North Queensland, conducted as part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. The Upper Burdekin Groundwater Project is a collaborative study between Geoscience Australia and the Queensland Government. It focuses on basalt groundwater resources in two geographically separate areas: the Nulla Basalt Province (NBP) in the south and the McBride Basalt Province (MBP) in the north. The NBP and MBP basalt aquifers are heterogeneous, fractured, vesicular systems. This report assesses how water levels in monitoring bores in the NBP and MBP respond to barometric pressure changes to evaluate the degree of formation confinement. The main process used to evaluate water level response to barometric pressure in this study is based on barometric efficiency (BE). The BE of a formation is calculated by dividing the change in monitoring bore water level by the causative barometric pressure change. Both parameters are expressed in the same units, so BE will typically be some fraction between zero and one. BE is not necessarily constant over time; the way BE changes following a theoretical step change in barometric pressure can be described using a barometric response function (BRF). BRFs were calculated in the time domain and plotted as BE against time lag for interpretation. The BRF shape was used to assess the degree of formation confinement. Although there is some uncertainty due to monitoring bore construction issues (including long effective screens) and potentially air or gas trapped in the saturated zone, all BRFs in the current project are interpreted to indicate unconfined conditions. This finding is supported by the identification of recharge at many monitoring bores through hydrograph analysis in other EFTF project components. We conclude that formations are likely to be unconfined at many project monitoring bores assessed in this study.
-
<p>This is a raster representing the base surface of the Nulla Basalt Province, inferred from sparse data available, dominated by private water bore records. This interpretation was conducted by a hydrogeologist from Geoscience Australia. <p>Caveats <p>• This is just one model, based on sparse data and considerable palaeotopographic interpretation <p>• This model relies on the input datasets being accurate. However it is noted that substantial uncertainty exists both in the location of private bores and the use of drillers’ logs for identifying stratigraphic contacts. <p>• The location of palaeothalwegs is imprecise, and often it is only indicative of the presence of a palaeovalley. <p>• The purpose of this model is for visualisation purposes, so should not be considered a definitive depth prediction dataset.
-
This data release contains accurate positional data for groundwater boreholes in terms of horizontal location as well as elevation of the top of casing protectors. Twenty-four boreholes located in the Nulla and McBride basalt provinces have had DGPS survey results compiled and are presented. Using 95% confidence intervals, the horizontal uncertainties are less than 1.2m and vertical uncertainties less than 0.9m. These results are a substantial improvement, particularly on the uncertainty of elevations, and as such allow water levels need to be compared between bores on a comparable datum, to enable a regional hydrogeological understanding. Quantifying the uncertainties in elevation data adds robustness to the analysis of water levels across the region rather than detracting from it.
-
The Upper Burdekin Basalt extents web service delivers province extents, detailed geology, spring locations and inferred regional groundwater contours for the formations of the Nulla and McBride Basalts. This work has been carried out as part of Geoscience Australia's Exploring for the Future program.
-
The capture and processing of aerial lidar and coincident imagery products is required for the Nulla Basalt Geological Province in the upper Burdekin catchment of north Queensland. The Nulla Basalt Province project is the second of a series of high resolution elevation data acquisition projects required to support Geoscience Australia’s Exploring for the Future programme focussed on northern Australia. Products created in the project will primarily be used for high precision modelling of surface water movement across the landscape, identification of potential interactions with ground water resources in the region and modelling of structural geology from subtle surface expression of fault line steps indicative of historical seismic events.
-
<p>Summary <p>Spring point locations compiled for the Nulla Basalt Province <p>A compilation of spring locations as identified through various methods, including existing Queensland Springs Database, topographic mapping, fieldwork visits, landholder citizen scientist mapping, and inspection for neighbouring similar features in Google Earth. This compilation has had locations adjusted through inspecting visible imagery and elevation data to identify the likely positions of springs at higher resolution.