From 1 - 10 / 41
  • Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight-year, $225m investment by the Australian Government. The Darling-Curnamona-Delamerian (DCD) 2D reflection seismic survey was acquired during May to August 2022 in the Delamerian Orogen, the Murray-Darling basin, the Curnamona Province, and the upper Darling River floodplain regions in South Australia, Victoria and New South Wales. This project is a collaboration between Geoscience Australia (GA), the Geological Survey of South Australia (GSSA), the Geological Survey of Victoria (GSV) and the Geological Survey of New South Wales (GSNSW) and was funded by the Australian Government’s Exploring for the Future (EFTF) program. The overall objective of the EFTF Darling-Curnamona-Delamerian project is to improve the understanding of mineral and groundwater resources of the Curnamona Province and Delamerian Orogen and overlying basin systems through acquisition and interpretation of new pre-competitive geoscience data sets. The total length of acquisition was 1256 km distributed over five deep crustal 2D reflection seismic lines 22GA-DL1 (446 km), 22GA-DL2 (249 km), 22GA-CD1 (287 km), 22GA-CD2 (178 km), 22GA-CD3 (39.5 km) to image deep crustal structures, and a high-resolution 2D reflection seismic line 22GA-UDF (56 km) to explore groundwater resources. The DL lines provide coverage of fundamental geophysical data over the Flinders Range, the Delamerian Province and the Murray-Darling basin region in eastern South Australia and Victoria. The CD lines extend through the Curnamona Province and into the Darling Basin. The UDF line will assist with refining the hydrogeological model, understanding groundwater dynamics, and locating areas better suited to groundwater bores for better quality groundwater in the upper Darling River floodplain area. The data processing was performed by a contractor under the supervision of Geoscience Australia. The five deep crustal lines (22GA-DL1,DL2,CD1,CD2,CD3) were processed with record lengths of 20 and 8 seconds, while the shallow high-resolution line (22GA-UDF) was processed at a 4 second length. This processing yielded DMO Stack, Post-Stack Time Migration, and Pre-Stack Time Migration products. <strong>Raw shot gathers and processed gathers for this survey are available on request from clientservices@ga.gov.au - Quote eCat# 147423</strong>

  • This animation shows how Airborne Electromagnetic Surveys Work, when conducted by a rotary wing (helicopter) aircraft. It is part of a series of Field Activity Technique Engagement Animations. The target audience are the communities that are impacted by our data acquisition activities. There is no sound or voice over. The 2D animation includes a simplified view of what AEM equipment looks like, what the equipment measures and how the survey works.

  • Exploring for the Future (EFTF) is an Australian Government initiative that gathers new data and information about potential mineral, energy and groundwater resources. Commencing in 2016 with a focus on northern Australia, an EFTF extension to 2024 was recently announced, with expanded coverage across mainland Australia and Tasmania. The EFTF energy component aims to improve our understanding of the petroleum potential of frontier onshore Australian basins and has acquired significant pre-competitive datasets, including the recently drilled Barnicarndy 1 deep stratigraphic well in Western Australia’s Canning Basin (in partnership with the Geological Survey of Western Australia), and NDI Carrara 1 deep stratigraphic well in the South Nicholson region of the Northern Territory (in partnership with the MinEX CRC). These are the first stratigraphic wells drilled in a petroleum basin by Geoscience Australia since the formation in 2001 from its predecessor agencies. Both wells were sited along two-dimensional, deep crustal seismic surveys acquired by Geoscience Australia as part of EFTF, and provide stratigraphic control for the imaged geology. The sedimentary fill intersected by the Barnicarndy 1 and NDI Carrara 1 wells were cored and logged with a broad suite of wireline tools, providing substantial new data in two frontier basins. These data provide insights into regional stratigraphy and local lithology. Geochronology, petrographic, organic and inorganic geochemistry, petrophysical rock properties, petroleum systems elements, palaeontological, and fluid inclusion studies have been undertaken upon which inferences on regional prospectivity can made in these data-poor regions. Moving into the next phase of EFTF, these wells provide a template for new pre-competitive data acquisition by Geoscience Australia, expanding our knowledge of frontier regions making them attractive for new investment and exploration.

  • As part of the Exploring For the Future program 2022 showcase, Geoscience Australia (GA) in collaboration with the Australian Institute of Geoscientists held an Airborne Electromagnetics (AEM) workshop in Perth on 11th August 2022. The workshop comprised the following: - An introduction to GA's 20 km spaced continent-wide AusAEM program, by Karol Czarnota - How the Western Australia government has successfully used 20 km spaced AEM data, by Klaus Gessner - An introduction to AEM, surveying, and quality control given by Yusen Ley-Cooper - An introduction to inverse theory presented by Anandaroop Ray - Hands-on AEM modeling and inversion using HiQGA.jl by Anandaroop Ray - Integrating geophysics and geology in subsurface interpretation, by Sebastian Wong - Avoiding the 10 most common pitfalls in AEM interpretation according to Neil Symington YouTube video from the workshop, as well as data and code to follow along with the videos can be found on GA's GitHub at <a href=https://github.com/GeoscienceAustralia/HiQGA.jl/tree/workshop><u>this link.</u></a>

  • NDI Carrara 1 is a deep stratigraphic drill hole (~1751m) completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1100 m of Proterozoic sedimentary rocks uncomformably overlain by 630 m of Cambrian Georgina Basin carbonates. This report presents petrology and clay speciation XRD conducted on of 6 selected volcaniclastic rocks taken from NDI Carrara 1 between ca. 1579 m and ca. 1653 m depth. Petrology and XRD was undertaken by Microanalysis Australia (under contract to Geoscience Australia as part of the Exploring for the Future program). Borehole completion report can be found at https://portal.ga.gov.au/bhcr/minerals/648482

  • Strontium isotopes (87Sr/86Sr) are useful in the earth sciences (e.g., recognising geological provinces, studying geological processes) as well in archaeological (e.g., informing on past human migrations), palaeontological/ecological (e.g., investigating extinct and extant taxa’s dietary range and migrations) and forensic (e.g., validating the origin of drinks and foodstuffs) sciences. Recently, Geoscience Australia and the University of Wollongong have teamed up to determine 87Sr/86Sr ratios in fluvial sediments selected from the low-density National Geochemical Survey of Australia (www.ga.gov.au/ngsa). The initial study targeted the northern parts of the Northern Territory and Queensland in Australia. The samples were taken from a depth of ~60-80 cm depth in floodplain deposits at or near the outlet of large catchments (drainage basins). A coarse grain-size fraction (<2 mm) was air-dried, sieved, milled then digested (hydrofluoric acid + nitric acid followed by aqua regia) to release total strontium. Preliminary results demonstrate a wide range of strontium isotopic values (0.7048 < 87Sr/86Sr < 1.0330) over the survey area, reflecting a large diversity of source rock lithologies, geological processes and bedrock ages. Spatial distribution of 87Sr/86Sr shows coherent (multi-point anomalies and gradients), large-scale (>100 km) patterns that appears to be consistent, in many places, with surface geology, regolith/soil type and/or nearby outcropping bedrock. For instance, the extensive black clay soils of the Barkly Tableland define a >500 km-long northwest-southeast trending low anomaly (87Sr/86Sr < 0.7182). Where carbonate or mafic igneous rocks dominate, a low to moderate strontium isotope signature is observed. In proximity to the outcropping Proterozoic metamorphic provinces of the Tennant, McArthur, Murphy and Mount Isa geological regions, high 87Sr/86Sr values (> 0.7655) are observed. A potential link between mineralisation and elevated 87Sr/86Sr values in these regions needs to be investigated in greater detail. Our results to-date indicate that incorporating soil/regolith strontium isotopes in regional, exploratory geoscience investigations can help identify basement rock types under (shallow) cover, constrain surface processes (e.g., weathering, dispersion), and, potentially, recognise components of mineral systems. Furthermore, the resulting strontium isoscape can also be utilised in archaeological, paleontological and ecological studies that aim to investigate past and modern animal (including humans) dietary habits and migrations.

  • The preserved successions from the Mesoproterozoic Era (1600 to 1000 Ma) are a relatively understudied part of Australian geological evolution, especially considering that this era has a greater time span than the entire Phanerozoic. These rocks are mostly known in variably-preserved sedimentary basins overlying Paleoproterozoic or Archean cratons or at the margins of these cratons. Some metamorphosed equivalents occur within the orogens between or marginal to these cratons. Both energy and mineral resources are hosted in Australian Mesoproterozoic basins, including the highly-prospective organic rich shale units within the Beetaloo Sub-basin (Northern Territory), which form part of the Beetaloo Petroleum Supersystem. The primary aim for this record is to provide a consolidated state of knowledge of Australian basins or successions similar in age to that of the Mesoproterozoic Beetaloo Petroleum Supersystem. The findings of this report will assist prioritising future work, through improved geological understanding and resource prospectivity. This report presents an overview of 14 Mesoproterozoic-age sedimentary basins or successions and their current level of understanding, including location, basin architecture, stratigraphy and depositional environments, age constraints and mineral and energy resources. Basins or successions included in this record are unmetamorphosed or metamorphosed to very low-grade conditions. Recommendations are made for future work to address the main knowledge gaps identified from this review. While some of these basins have been the focus of recent intense study and data acquisition, the extent of knowledge varies broadly across basins. All basins reviewed in this record would benefit from further geochemical and geochronological analyses, and stratigraphic study to better understand the timing of depositional events and their correlation with nearby basins. Elucidation of the post-depositional history of alteration, migration of fluids and/or hydrocarbons would facilitate future exploration and resource evaluation.

  • Carbon capture and storage (CCS) is a central component of many proposed pathways to reach net zero CO2 emissions by 2050. Even under conservative estimates, successful deployment of CCS projects at scale will require a substantial investment in the selection and development of new sequestration sites. While several studies have considered the potential costs associated with individual sequestration projects, and others have evaluated the costs of capture and sequestration in a generic manner, few have examined how regional differences in transport distances and reservoir properties may affect the overall costs of sequestration projects. In this abstract, we outline a new model to assess the costs associated with new carbon sequestration projects. The model evaluates the cost of CCS projects accounting for regional variations in transport distance and cost and well the storage properties of individual reservoirs. We present preliminary results from the modelling tool, highlighting potential opportunities for new CCS projects.

  • The Exploring for the Future (EFTF) program is an Australian government initiative to boost investment in resource exploration and development in Australia, and is committed to supporting a strong economy, resilient society and sustainable environment for the benefit of Australians. There are a number of interrelated projects within the EFTF, including the Australia’s Resources Framework (ARF) project. The latter is a continental-scale project aimed at laying the foundations for a national view of Australia’s surface and subsurface geology, to underpin our understanding of the continent’s mineral, energy and groundwater potential. The ARF project involves new, large-scale data acquisition, advances in big data analytics and tailored resource assessments, to support the resource sector, agriculture, remote communities and the environment, and contribute to community safety. As part of ARF, Geoscience Australia has been undertaking studies of Australian basins that are prospective for, or have potential for, basin-hosted base metal mineral systems (Pb-Zn, Co-Cu), as part of the basins module. The first component of this module (2016-2020) investigated the Paleoproterozoic to Mesoproterozoic greater McArthur Basin system, Northern Territory and western Queensland (Champion et al., 2020 a, b, c; Huston et al. 2020). The 2020-2024 module is focusing on the Neoproterozoic part of the Stuart Shelf region of the Adelaide Superbasin, South Australia. The Paleo- to Mesoproterozoic sedimentary and volcanic sequences of the Mount Isa–McArthur Basin region of Northern Territory and Queensland are host to a range of world class mineral deposits (Hutton et al., 2012) and include the basin-hosted base metal deposits of the North Australian Zinc Belt, the world’s richest belt of zinc deposits (Huston et al., 2006; Large et al., 2005). These syngenetic (and epigenetic) basin-hosted mineral deposits include McArthur River (formerly HYC) and Century lead-zinc (Pb-Zn) deposits, the Walford Creek Zn-Pb-Cu-Ag deposit (Rohrlach et al., 1998; Large et al., 2005; Hutton et al. 2012) and the Redbank Cu deposit (Knutson et al. 1979). The Neoproterozoic sedimentary sequences of the Stuart Shelf, and their continuation into the Torrens Hinge Zone and Adelaide Rift Complex (Adelaide Superbasin), South Australia, are host to, or form an integral part of, a number of, often historically important, deposits, including the first copper mining region in Australia. These include, amongst others, the Kapunda, Mt Gunson, Cattle Grid, MG14, Windabout, Myall Creek, and Emmie Bluff copper deposits (Lambert et al. 1980, 1984, 1985 1987; Knutson et al. 1983; Coda Minerals 2020, 2021). These deposits are hosted within the Neoproterozoic sediments or along the basal unconformity with older Mesoproterozoic clastic sedimentary rocks (Lambert et al. 1987). This report contains reanalysed geochemical data, and associated sample metadata, for legacy samples collected by the Baas Becking laboratories in the 1970’s from deposits and surrounds in the MacArthur Basin and Stuart Shelf region. This includes samples (mafic igneous rocks, mineralised samples and sedimentary rocks) from the Redbank Cu deposit and surrounds in the McArthur Basin, partly documented in Knutson et al. (1979); samples (sediments, mafic igneous rocks including basement volcanic units (Gawler Range Volcanics), and mineralised samples) from the Mt Gunson deposit and surrounds (Mt Gunson-Lake Dutton area) documented in Knutson et al. (1983, 1992); and a small subset of five samples (sediments, variably mineralised) from the Myall Creek prospect, documented in Lambert et al. (1984). The great majority of these samples are from drill core, with the full list of samples analyses and metadata listed in Appendix A and summarised in Table 1. This data release also includes 52 samples from the Killi Killi Hills regions and surrounds, Tanami, Northern Territory (jobno 9004424), collected by the NTGS and GA, and originally analysed, in the early 1990’s and early 2000’s. These samples included a subset of P2O5-Sr-HREE-enriched Gardiner Sandstone samples from the Killi Killi Hills prospect. These samples are not directly related to the basins project but have been included as they were analysed at the same time as the Stuart Shelf and Redbank samples, and they increase the number of samples and the range of rock types analysed, and so help with statistics for QA/QC purposes. All geochemical data are provided in the appendices, listed by batch. The data can be downloaded via the Geoscience Australia EFTF portal (https://portal.ga.gov.au/persona/eftf).

  • These conductivity grids were generated by gridding the top 22 layers from the airborne electromagnetics (AEM) conductivity models from the Western Resource Corridor AusAEM survey (https://dx.doi.org/10.26186/147688), the Earaheedy and Desert Strip AusAEM survey (https://pid.geoscience.gov.au/dataset/ga/145265) and several industry surveys (https://dx.doi.org/10.26186/146278) from the West Musgraves. The grids resolve important subsurface features for assessing the groudnwater system including lithologial boundaires, palaeovalleys and hydrostatigraphy.