From 1 - 10 / 26
  • This web map service provides the locations and status, as at 30 June 2020, of Australian operating mines, mines under development, mines on care and maintenance and resource deposits associated with critical minerals. Developing mines are deposits where the project has a positive feasibility study, development has commenced or all approvals have been received. Mines under care and maintenance and resource deposits are based on known resource estimations and may produce critical minerals in the future.

  • This web map service provides visualisations of datasets prepared for the Technology Investment Roadmap Data Portal. The service has been developed using various mineral deposit, mine location and industrial plant location datasets sourced from the Australia’s Identified Mineral Resources (2019), produced by Geoscience Australia (http://dx.doi.org/10.11636/1327-1466.2018)

  • <div>Airborne electromagnetics surveys are at the forefront of addressing the challenge of exploration undercover. They have been essential in the regional mapping programmes to build Australia's resource potential inventory and provide information about the subsurface. In collaboration with state and territory geological surveys, Geoscience Australia (GA) leads a national initiative to acquire AEM data across Australia at 20 km line spacing, as a component of the Australian government Exploring for The Future (EFTF) program. Regional models of subsurface electrical conductivity show new undercover geological features that could host critical mineral deposits and groundwater resources. The models enable us to map potential alteration and structural zones and support environmental and land management studies. Several features observed in the AEM models have also provided insights into possible salt distribution analysed for its hydrogen storage potential. The AusAEM programme is rapidly covering areas with regional AEM transects at a scale never previously attempted. The programme's success leans on the high-resolution, non-invasive nature of the method and its ability to derive subsurface electrical conductivity in three dimensions – made possible by GA's implementation of modern high-performance computing algorithms. The programme is increasingly acquiring more AEM data, processing it, and working towards full national coverage.</div> This Abstract was submitted/presented to the 2023 Australian Exploration Geoscience Conference 13-18 Mar (https://2023.aegc.com.au/)

  • This web map service provides visualisations of datasets prepared for the Technology Investment Roadmap Data Portal. The service has been developed using various mineral deposit, mine location and industrial plant location datasets sourced from the Australia’s Identified Mineral Resources (2019), produced by Geoscience Australia (http://dx.doi.org/10.11636/1327-1466.2018)

  • This web service delivers datasets produced by the Critical Minerals Mapping Initiative (CMMI), a collaboration between Geoscience Australia (GA), the Geological Survey of Canada (GSC) and the United States Geological Survey (USGS). Data in this service includes geochemical analyses of over 7000 samples collected from or near mineral deposits from 60 countries, and mineral prospectivity models for clastic-dominated (Zn, Pb) and Mississippi Valley-type (Zn-Pb) deposits across Canada, the United States, and Australia.

  • This web service delivers datasets produced by the Critical Minerals Mapping Initiative (CMMI), a collaboration between Geoscience Australia (GA), the Geological Survey of Canada (GSC) and the United States Geological Survey (USGS). Data in this service includes geochemical analyses of over 7000 samples collected from or near mineral deposits from 60 countries, and mineral prospectivity models for clastic-dominated (Zn, Pb) and Mississippi Valley-type (Zn-Pb) deposits across Canada, the United States, and Australia.

  • This map shows the locations and status, as at 31 December 2022, of Australian operating mines, mines under development, mines on care and maintenance and resource deposits associated with critical minerals. Developing mines are deposits where the project has a positive feasibility study, development has commenced or all approvals have been received. Mines under care and maintenance and resource deposits are based on known resource estimations and may produce critical minerals in the future. The critical mineral deposits on this map may not be comprehensive for all commodities. For the purposes of this map, critical minerals are defined as minerals and elements (solid and gaseous) that are vital for modern technology and whose supply may be at risk of disruption. The Australian critical minerals list comprises aluminium (high-purity alumina), antimony, beryllium, bismuth, chromium, cobalt, gallium, germanium, graphite, hafnium, helium, indium, lithium, magnesium, niobium, platinum group elements, rare earth elements, rhenium, scandium, silicon (high-purity silica), tantalum, titanium, tungsten, vanadium and zirconium. These commodities are coloured by mineral groupings on the map.

  • <div>This A1 poster aims to introduce Year 3/4 and older students to the many ways that minerals and elements are used in our everyday lives. </div><div>&nbsp;6 key uses of 14 critical and strategic minerals are highlighted by colourful lines linking images. Students should take their time viewing the poster; they can follow the wiggly lines from minerals to product or vice versa and work out how many minerals link to each type of use.</div><div>&nbsp;The poster is also suitable for secondary students with the inclusion of a specific element name with each highlighted mineral plus the element symbol and atomic number.</div><div>&nbsp;The poster is intended to be a colourful rich stimulus to engage student interest in the resources from the ground used in our modern world.</div><div><br></div>

  • This map shows the locations and status, as at 30 June 2020, of Australian operating mines, mines under development, mines on care and maintenance and resource deposits associated with critical minerals. Developing mines are deposits where the project has a positive feasibility study, development has commenced or all approvals have been received. Mines under care and maintenance and resource deposits are based on known resource estimations and may produce critical minerals in the future. The critical mineral deposits on this map may not be comprehensive for all commodities. For the purposes of this map, critical minerals are defined as minerals and elements (solid and gaseous) that are vital for modern technology and whose supply may be at risk of disruption. The Australian critical minerals list comprises antimony, beryllium, bismuth, chromium, cobalt, gallium, germanium, graphite, hafnium, helium, indium, lithium, magnesium, niobium, platinum group elements, rare earth elements, rhenium, scandium, tantalum, titanium, tungsten, vanadium and zirconium. These commodities are coloured by mineral groupings on the map.

  • This web map service provides the locations and status, as at 30 June 2020, of Australian operating mines, mines under development, mines on care and maintenance and resource deposits associated with critical minerals. Developing mines are deposits where the project has a positive feasibility study, development has commenced or all approvals have been received. Mines under care and maintenance and resource deposits are based on known resource estimations and may produce critical minerals in the future.