From 1 - 10 / 26
  • The Exploring for the Future (EFTF) program is unmatched for the scale of geoscience data acquisition across northern Australia, covering 37 648 individual land parcels and 2.9 million km2. The scale of works has raised many new challenges for Geoscience Australia (GA) through the diverse range of field activities, and the numerous stakeholders from different social and cultural backgrounds, across multiple jurisdictions. Success of the program depended on the development and maintenance of a social licence to operate. This was broadly achieved for fieldwork activities through early engagement with stakeholders, including free, prior and informed consent. Here, we present two case studies of stakeholder engagement for facilitation of data collection: one focuses on broadscale, low-impact field activities associated with the AusAEM survey; and the other on Indigenous-focused engagement related to the Barkly Seismic Survey. Because of the complexity of project planning and managing such a large number of stakeholders, GA’s project governance team was expanded; it now includes a dedicated Land and Marine Access team and a commitment to adopt world-leading engagement practices. One practice is to consider impacts and benefits for all stakeholders—not just landholders—of field activities and data acquisition programs. This includes a plan for how the data are delivered back to the communities and stakeholders, and how information exchanges can be built into projects. The aim is for stakeholders to hold GA in the highest regard and understand the benefits to the Australian people, and ultimately their own communities, from the geoscientific data that GA produces. <b>Citation:</b> Mouthaan, R., Buchanan, S. and Sweeney, M, 2020. Land access and Indigenous engagement for Australian geoscience. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • <p>The AusAEM Year 1 NT/QLD Airborne Electromagnetic Survey covers the Newcastle Waters and Alice Springs 1:1 Million map sheets in the Northern Territory and the Normanton and Cloncurry 1:1 Million map sheets in Queensland. CGG Aviation (Australia) Pty. Ltd. flew the 67,700-line kilometre survey between 2017 and 2018 using the TEMPEST® airborne electromagnetic system. Flown at 20-kilometre line spacing, data were acquired and processed under contract to Geoscience Australia. <p>This data package supersedes and replaces two earlier releases: June 11, 2018, and December 2018 (eCatID 120948) with revised calibrations and processing. Along with the regionally spaced (20 km) flight lines, it now includes 1,500 line kilometres of infill flying that was funded by private exploration companies and not previously released in view of time-bounded confidentiality agreements. The survey was commissioned by Geoscience Australia as part of the Exploring for the Future (EFTF) program. The EFTF program is led by Geoscience Australia (GA), in collaboration with the Geological Surveys of the Northern Territory, Queensland, South Australia and Western Australia, and is investigating the potential mineral, energy and groundwater resources in northern Australia and South Australia. The EFTF is a four-year $100.5 million investment by the Australian Government in driving the next generation of resource discoveries in northern Australia, boosting economic development across this region. This Data Release (Phase 1) Package contains the final survey deliverables produced by the contractor CGG, including: <p>a) The operations and processing report. <p>b) Final processed electromagnetic, magnetic and elevation point located line data. <p>c) Final processed electromagnetic, magnetic and elevation grids. <p>d) Conductivity estimates generated by the EM Flow® conductivity depth-imaging algorithm. <p>e) Graphical multi-plots of line data and EM Flow® conductivity sections. <p>f) Graphical stacked EM Flow® conductivity sections. <p>g) ESRI shape-files containing the flight line locations. <p>An updated release package (Phase 2), which contains results from our in-house inversion of the EM data (from this Phase 1 release), which includes the regional and infill areas are downloadable from the link provided in the Downloads tab.

  • The AusAEM1 survey is the world’s largest airborne electromagnetic survey flown to date, extending across an area exceeding 1.1 million km2 over Queensland and the Northern Territory. Approximately 60 000 line kilometres of data were acquired at a nominal line spacing of 20 km. Using this dataset, we interpreted the depth to chronostratigraphic surfaces, assembled stratigraphic relationship information, and delineated structural and electrically conductive features. Our results improved understanding of upper-crustal geology, led to 3D mapping of palaeovalleys, prompted further investigation of electrical conductors and their relationship to structural features and mineralisation, and helped us continuously connect correlative outcropping units separated by up to hundreds of kilometres. Our interpretation is designed to improve targeting and outcomes for mineral, energy and groundwater exploration, and contributes to our understanding of the chronostratigraphic, structural and upper-crustal evolution of northern Australia. More than 150 000 regional depth measurements, each attributed with detailed geological information, are an important step towards a national geological framework, and offer a regional context for more detailed, smaller-scale AEM surveys. <b>Citation:</b> Wong, S.C.T., Roach, I.C., Nicoll, M.G., English, P.M., Bonnardot, M.-A., Brodie, R.C., Rollet, N. and Ley-Cooper, A.Y., 2020. Interpretation of the AusAEM1: insights from the world’s largest airborne electromagnetic survey. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • <div><strong>Output Type: </strong>Exploring for the Future Extended Abstract</div><div><br></div><div><strong>Short Abstract:</strong> Under the Exploring for the Future (EFTF) program, Geoscience Australia staff and collaborators engaged with land-connected stakeholders that managed or had an interest in land comprising 56% of the total land mass area of Australia. From 2020 to 2023, staff planning ground-based and airborne geophysical and geological data acquisition projects consulted farmers, National Park rangers and managers, Native Title holders, cultural heritage custodians and other land-connected people to obtain land access and cultural heritage clearances for surveys proposed on over 122,000 parcels of land. Engagement did not always result in field activities proceeding. To support communication with this diverse audience, animations, comic-style factsheets, and physical models, were created to help explain field techniques. While the tools created have been useful, the most effective method of communication was found to be a combination of these tools and open two-way discussions.</div><div><br></div><div><strong>Citation: </strong>Sweeney, M., Kuoni, J., Iffland, D. &amp; Soroka, L., 2024. Improving how we engage with land-connected people about geoscience. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts. Geoscience Australia, Canberra. https://doi.org/10.26186/148760</div>

  • <div><strong>Yathong, Forbes, Dubbo, and Coonabarabran Airborne Electromagnetic Survey Blocks.</strong></div><div><br></div><div>Geoscience Australia (GA), in collaboration with the Geological Survey of New South Wales (GNSW), conducted an airborne electromagnetic (AEM) survey from April to June 2023. The survey spanned from the north-eastern end of the Yathong-Ivanhoe Trough and extended across the Forbes, Dubbo, and Coonabarabran regions of New South Wales.&nbsp;A total of 15, 090-line kilometres of new AEM and magnetic geophysical data were acquired. This survey was entirely funded by&nbsp;GSNSW and GA managed acquisition, quality control, processing, modelling, and inversion of the AEM data.</div><div><br></div><div>The survey was flown by Xcalibur Aviation (Australia) Pty Ltd using a 6.25 Hz HELITEM® AEM system. The survey blocks were flown at 2500-metre nominal line spacings, with variations down to 100 metres in the Coonabarabran block. It was flown following East-West line directions. Xcalibur also processed the acquired data. This data package includes the acquisition and processing report, the final processed AEM data, and the results of the contractor's conductivity-depth estimates. The data package also contains the results and derived products from a 1D inversion by Geoscience Australia with its own inversion software.</div><div><br></div><div>The survey will be incorporated and become part of the national AusAEM airborne electromagnetic acquisition program, which aims to provide geophysical information to support investigations of the regional geology and groundwater.</div><div><br></div><div><strong>The data release package contains:</strong></div><div><br></div><div>1. A data release package <strong>summary PDF document</strong></div><div>2. The <strong>survey logistics and processing report</strong> and HELITEM® system specification files</div><div>3. <strong>Final processed point located line data</strong> in ASEG-GDF2 format for the five areas</div><div> -final processed dB/dt electromagnetic, magnetic and elevation data</div><div> -final processed B field electromagnetic, magnetic and elevation data</div><div><strong> <em>Conductivity estimates generated by Xcalibur’s inversion&nbsp;</em></strong></div><div> -point located conductivity-depth line data output from the inversion in ASEG-GDF2 format</div><div> -graphical (PDF) multiplot conductivity stacks and section profiles for each flight line</div><div> -graphical (PNG) conductivity sections for each line</div><div> -grids generated from the Xcalibur’s inversion in ER Mapper® format (layer conductivities slices, DTM, X & Z component for each of the 25 channels, time constants, TMI)</div><div>4.<strong> ESRI shape and KML</strong> (Google Earth) files for the flight lines and boundary</div><div>5<strong>. Conductivity estimates generated by Geoscience Australia's inversion&nbsp;</strong></div><div> -point located line data output from the inversion in ASEG-GDF2 format</div><div> -graphical (pdf) multiplot conductivity sections for each line</div><div> -georeferenced (PNG) conductivity sections (suitable for pseudo-3D display in a 2D GIS)</div><div> -GoCAD™ S-Grid 3D objects (suitable for various 3D packages)</div><div> -Curtain image conductivity sections in log & liner colour stretch (suitable 3D display in GA’s EarthSci)</div><div><br></div><div><strong>Directory structure</strong></div><div>├── <strong>01_Report</strong></div><div>├── <strong>02_XCalibur_delivered</strong></div><div>│&nbsp;&nbsp; ├── * survey_block_Name</div><div>│ ├── cdi</div><div>│ │ ├── sections</div><div>│ │ └── stacks</div><div>│ ├── grids</div><div>│ │ ├── cnd</div><div>│ │ ├── dtm</div><div>│ │ ├── emxbf</div><div>│ │ ├── emxdb</div><div>│ │ ├── emxff</div><div>│ │ ├── emxzbf</div><div>│ │ ├── emzdb</div><div>│ │ ├── time_constant</div><div>│ │ └── tmi</div><div>│ ├── located_data</div><div>│ ├── maps</div><div>│ └── waveform</div><div>│&nbsp;&nbsp; </div><div>├── <strong>03_Shape&kml</strong></div><div>└── <strong>04_GA_Layer_Earth_inversion</strong></div><div> ├── * survey_block_Name</div><div> ├── GA_georef_sections</div><div> │ ├── linear-stretch</div><div> │ └── log-stretch</div><div> ├── GA_Inverted_conductivity_models</div><div> ├── GA_multiplots</div><div> └── GA_sgrids</div><div> </div>

  • Airborne electromagnetic data generated by the AusAEM Survey are shown to map mineral deposit host rocks and regional geological features within the AusAEM Survey area. We have developed new functionality in Geoscience Australia’s sample-by-sample layered earth inversion algorithm, allowing inversion of the magnitude of the combined vector sum of the X- and Z-components of TEMPEST AEM data. This functionality improves the clarity of inverted interpretation products by reducing the degree of along-line incoherency inherent to stitched 1D inversions. The new inversion approach improves the interpretability of sub-horizontal conductors, allowing better mapping of geological features under cover. Examples of geological mapping by the AusAEM survey highlight the utility of wide line spacing, regional AEM surveying to improve geological, mineral systems and groundwater resource understanding in the regions flanking outcropping mineral deposit host rocks in northern Australia. Presented at the 2019 Australasian Exploration Geoscience Conference

  • The discovery of strategically located salt structures, which meet the requirements for geological storage of hydrogen, is crucial to meeting Australia’s ambitions to become a major hydrogen producer, user and exporter. The use of the AusAEM airborne electromagnetic (AEM) survey’s conductivity sections, integrated with multidisciplinary geoscientific datasets, provides an excellent tool for investigating the near-surface effects of salt-related structures, and contributes to assessment of their potential for underground geological hydrogen storage. Currently known salt in the Canning Basin includes the Mallowa and Minjoo salt units. The Mallowa Salt is 600-800 m thick over an area of 150 × 200 km, where it lies within the depth range prospective for hydrogen storage (500-1800 m below surface), whereas the underlying Minjoo Salt is generally less than 100 m thick within its much smaller prospective depth zone. The modelled AEM sections penetrate to ~500 m from the surface, however, the salt rarely reaches this level. We therefore investigate the shallow stratigraphy of the AEM sections for evidence of the presence of underlying salt or for the influence of salt movement evident by disruption of near-surface electrically conductive horizons. These horizons occur in several stratigraphic units, mainly of Carboniferous to Cretaceous age. Only a few examples of localised folding/faulting have been noted in the shallow conductive stratigraphy that have potentially formed above isolated salt domes. Distinct zones of disruption within the shallow conductive stratigraphy generally occur along the margins of the present-day salt depocentre, resulting from dissolution and movement of salt during several stages. This study demonstrates the potential AEM has to assist in mapping salt-related structures, with implications for geological storage of hydrogen. In addition, this study produces a regional near-surface multilayered chronostratigraphic interpretation, which contributes to constructing a 3D national geological architecture, in support of environmental management, hazard mapping and resource exploration. <b>Citation: </b>Connors K. A., Wong S. C. T., Vilhena J. F. M., Rees S. W. & Feitz A. J., 2022. Canning Basin AusAEM interpretation: multilayered chronostratigraphic mapping and investigating hydrogen storage potential. In: Czarnota, K (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146376

  • This animation shows how Airborne Electromagnetic Surveys Work, when conducted by a rotary wing (helicopter) aircraft. It is part of a series of Field Activity Technique Engagement Animations. The target audience are the communities that are impacted by our data acquisition activities. There is no sound or voice over. The 2D animation includes a simplified view of what AEM equipment looks like, what the equipment measures and how the survey works.

  • <div>The dataset contained in this package and release consists of GA’s Layered-Earth-Inversion (GALEI, Brodie, 2016) conductivity-depth estimates from the AEM data, acquired over several areas of Western Australia, converted into SEG-Y format. The SEG-Y data standard was proposed by the Society of Exploration Geophysicists (SEG) standards committee (see Norris & Faichney 2002). Previously, the AEM data has been released as point located line data in conventional ascii format and is accessible through several of the following associated eCat records (<a href="https://pid.geoscience.gov.au/dataset/ga/146345">146345</a>, <a href="https://pid.geoscience.gov.au/dataset/ga/146042">146042</a>, <a href="https://pid.geoscience.gov.au/dataset/ga/144621">144621</a>, <a href="https://pid.geoscience.gov.au/dataset/ga/145265">145265</a> and <a href="https://pid.geoscience.gov.au/dataset/ga/147688">147688</a>). This SEG-Y data release is expected to benefit users who require the AEM modelled sections in SEG-Y format to assist in their interpretations, investigations and discovery of potential mineral, energy, and groundwater resources within Australia.&nbsp;</div>

  • The Exploring for the Future program Showcase 2024 was held on 13-16 August 2024. Day 2 - 14th August talks included: <b>Session 1 - Architecture of the Australian Tectonic Plate</b> <a href="https://youtu.be/a8jzTdNdwfk?si=OWNlVR-FLDhF1GVM">AusArray: Australian lithosphere imaging from top to bottom</a> - Dr Alexei Gorbatov <a href="https://youtu.be/j5ox8Ke5n6M?si=YkfDno2xmZXueS1b">AusLAMP: Mapping lithospheric architecture and reducing exploration space in Australia</a> - Jingming Duan <a href="https://youtu.be/qZ6wjzx_dNc?si=NjDEzvqyEeM24-E8">Constraining the thermomechanical and geochemical architecture of the Australian mantle: Using combined analyses of xenolith inventories and seismic tomography</a> - Dr Mark Hoggard <b>Session 2 - Quantitative characterisation of Australia's surface and near surface</b> <a href="https://youtu.be/nPfa_j3_dos?si=mktfIJWXeLElIOK4">AusAEM: The national coverage and sharpening near surface imaging</a> - Dr Anandaroop Ray <a href="https://youtu.be/SU6ak98JvAw?si=DQPovulHa4poqcm0">Unlocking the surface geochemistry of Australia</a> - Phil Main <a href="https://youtu.be/Xtm45CT6e-s?si=JHU7J-ktgVrbj1Ke">Spotlight on the Heavy Mineral Map of Australia</a> - Dr Alex Walker <b>Session 3 – Maps of Australian geology like never before</b> <a href="https://youtu.be/aRISb1YYigU?si=3byJbqW0qRTqCB8-">An Isotopic Atlas of Australia: Extra dimensions to national maps</a> - Dr Geoff Fraser <a href="https://youtu.be/khSy-WAkw-w?si=F-Y67FX3jXN5zZaz">First continental layered geological map of Australia</a> - Dr Guillaume Sanchez <a href="https://youtu.be/Z3GlCJepLK4?si=k_tbaKdmxGBmoSro">An integrated 3D layered cover modelling approach: Towards open-source data and methodologies for national-scale cover modelling</a> - Sebastian Wong View or download the <a href="https://dx.doi.org/10.26186/149800">Exploring for the Future - An overview of Australia’s transformational geoscience program</a> publication. View or download the <a href="https://dx.doi.org/10.26186/149743">Exploring for the Future - Australia's transformational geoscience program</a> publication. You can access full session and Q&A recordings from YouTube here: 2024 Showcase Day 2 - Session 1 - <a href="https://www.youtube.com/watch?v=EHBsq0-pC8c">Architecture of the Australian Tectonic Plate</a> 2024 Showcase Day 2 - Session 2 - <a href="https://youtube.com/watch?v=xih4lbDk-1A">Quantitative characterisation of Australia's surface and near surface</a> 2024 Showcase Day 2 - Session 3 - <a href="https://www.youtube.com/watch?v=qeTLc1K-Cds">Maps of Australian geology like never before</a>