From 1 - 10 / 54
  • Geoscience Australia (GA) has acquired Landsat satellite image data over Australia since 1979, from instruments including the Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS). This data represents raw telemetry which has either been received directly at Geoscience Australia's (GAs) receiving stations (Alice Springs or - formerly - Hobart), or downloaded from the United States Geological Survey Organisation. The data is maintained in raw telemetry format as a baseline to downstream processes. While this data has been used extensively for numerous land and coastal mapping studies, its utility for accurate monitoring of environmental resources has been limited by the processing methods that have been traditionally used to correct for inherent geometric and radiometric distortions in EO imagery. To improve access to Australia's archive of Landsat TM/ETM+/OLI data, several collaborative projects have been undertaken in conjunction with industry, government and academic partners. These projects have enabled implementation of a more integrated approach to image data correction that incorporates normalising models to account for atmospheric effects, BRDF (Bi-directional Reflectance Distribution Function) and topographic shading (Li et al., 2012). The approach has been applied to Landsat TM/ETM+ and OLI imagery to create the surface reflectance products. <b>Value: </b>The Landsat Raw Data Archive is processed and further calibrated to input to development of information products toward an improved understanding of the distribution and status of environmental phenomena. <b>Scope: </b>Data is provided via the US Geological Survey's (USGS) Landsat program, following downlink and recording of the data at Alice Springs Antenna (operated by Geoscience Australia) or downloaded directly from USGS EROS

  • The Onshore Seismic Data Collection includes regional crustal scale seismic datasets across the Australian Continent collected by Geoscience Australia (GA) and its predecessors, the Bureau of Mineral Resources (BMR) and Australian Geological Survey Organisation (AGSO) in collaboration with the State and Territory Geological Surveys, Australian National Seismic Imaging Resource (ANSIR) ( National Research Facility for Earth Sounding), AuScope Earth Imaging (under the Australian Government's National Collaborative Research Infrastructure Strategy), Universities and other industry and research partners. The collection preserves raw and processed seismic data. The GIS dataset of Onshore Seismic Surveys from 1976 to present (updated May 2019) shows locations of seismic recording stations (the original ecat <a href="https://pid.geoscience.gov.au/dataset/ga/100802">100802</a>). It is generated from a database containing coordinates of all Geoscience Australia's seismic traverses. This Shape file enables users to display seismic lines on a map and contains links to data packages available for free download. < b>Value: </b>Data used to expand the geoscientific understanding of the earth's crustal structure and provide new insights into Australia's onshore energy and mineral potential. This data can be used for the assessment of resource potential. <b>Scope: </b>Primarily targeted regional crustal scale cross-sections (2D) for research purposes. <b> To view the seismic dataset by state use the following URL: </b> https://www.ga.gov.au/about/projects/resources/seismic

  • Collection of Geoscience Australia's high-resolution elevation surveys collected using Light Detection and Ranging (LiDAR) and other instrument systems. <b>Value: </b>Describes Australia's landforms and seabed is crucial for addressing issues relating to the impacts of climate change, disaster management, water security, environmental management, urban planning and infrastructure design. <b>Scope: </b>Selected areas of interest around Australia.

  • A `weighted geometric median' approach has been used to estimate the median surface reflectance of the barest state (i.e., least vegetation) observed through Landsat-8 Operational Land Image (OLI) observations from 2013 to September 2018 to generate a six-band Landsat-8 Barest Earth pixel composite mosaic over the Australian continent. The bands include BLUE (0.452 - 0.512), GREEN (0.533 - 0.590), RED, (0.636 - 0.673) NIR (0.851 - 0.879), SWIR1 (1.566 - 1.651) and SWIR2 (2.107 - 2.294) wavelength regions. The weighted median approach is robust to outliers (such as cloud, shadows, saturation, corrupted pixels) and also maintains the relationship between all the spectral wavelengths in the spectra observed through time. The product reduces the influence of vegetation and allows for more direct mapping of soil and rock mineralogy. Reference: Dale Roberts, John Wilford, and Omar Ghattas (2018). Revealing the Australian Continent at its Barest, submitted. <b>Value: </b>Has broad application in mapping surface geochemistry and mineralogy of exposed soil and bedrock. Has applications in geological mapping and natural resource management including mapping of soil characteristics. <b>Scope: </b>Two enhanced bare earth products have been generated reflecting different Landsat satellites and acquisition periods. The first only uses Landsat 8 observations from 2013 to 2018. The second incorporates the full 30+ year archive combining Landsat 5, 7, and 8 from 1986 to 2018.

  • Gravity data measure small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The gravity data collection contains both onshore and offshore data acquired on geophysical surveys conducted by Commonwealth, State & NT Governments and the private sector. <b>Value: </b>Gravity used to infer (model) the presence and position of different rock types in the subsurface. Used in resource assessment <b>Scope: </b>Australia continent and some data from marine surveys in region

  • Relatively little is known about what the seafloor of Australia's continental shelf looks like or has living on it. Geoscience Australia (GA), together with other partners, undertakes a range of marine surveys to improve our understanding and management of Australia's marine environments. One component of the research involves the collection of underwater imagery to directly observe and characterise coastal and deep sea habitats. In some regions these surveys build on existing baseline knowledge, but in many areas, particularly deep offshore locations, these surveys provide the first images of the seafloor. The imagery collection includes both still and video imagery collected using various systems, including towed platforms, remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs). Post-survey reports and metadata files are included as part of the collection, which describe further details of the surveys and respective imagery collections. The seafloor imagery provides a wealth of information about the geological features, habitats and life forms occurring throughout Australia's marine jurisdiction. <b>Value: </b>Improve the understanding and management of Australia's marine environments. <b>Scope: </b>GA surveys from 2007 onwards in waters around Australia and Australia's Antarctic Territory.

  • This collection includes information regarding the location and design of Australian onshore and offshore boreholes, where boreholes are defined as the generalized term for any narrow shaft drilled in the ground, either vertically or horizontally. In this context, boreholes include: Mineral Drillholes, Petroleum Wells and Water Bores along with a variety of others types, but does not include Costean, Trench or Pit. <b>Value: </b> Information related to the boreholes described in this collection have the potential to support geological investigations and assessment of a variety of resources. <b>Scope: </b>Selected open file boreholes Australian boreholes located onshore and offshore

  • This collection contains all national level bathymetry grids held by Geoscience Australia (GA) dating back to survey data obtained since 1993. <b>Value: </b>Bathymetry data is used for a wide range of marine applications including: navigation, environmental assessment, jurisdictional boundaries, resource exploration. <b>Scope: </b>Data holdings lying within the offshore area of Australia, including international waters. <b>To access the AusSeaBed Marine Data Portal</b> use the following link: <a href="https://portal.ga.gov.au/persona/marine#/">https://portal.ga.gov.au/persona/marine#/</a>

  • Time series seismograph data recorded from Australian National Seismograph Network (ANSN) observatories in Australia, islands in the Pacific, Southern and Indian Ocean's and the Australian Antarctic Territory. <b>Value: </b>This data is used for earthquake monitoring, measurement, detection and location of earthquakes, which is valuable for emergency response, hazard modelling and mitigation. The dataset is also used to meet a subset of Australia's obligations to the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO) to fulfil Australia's commitment to nuclear explosion monitoring. <b>Scope: </b>Observatories in Australia, islands in the Pacific, Southern and Indian Ocean's and the Australian Antarctic Territory

  • Segmented time series data for earthquake events. Data are in raw digital counts and have associated instrument metadata for calibration to physical ground-motion measures. These data are used to inform a range of applications in seismic hazard assessment and for assessing the utility of current observatory practice for magnitude assessment. <b>Value: </b>Used in the selection and development of ground-motion models used for seismic hazard purposes. These data also enable the assessment and development of new earthquake magnitude formulae. <b>Scope: </b>Data has been collected on an ad hoc basis, some early digital data dates back to 1989 (i.e. Newcastle earthquake), and the dataset continues to grow as earthquakes of interest occur, or various temporary deployments are rolled out. Instrument metadata is not always known.