EFTF – Exploring For The Future
Type of resources
Keywords
Publication year
Topics
-
<div>Templates and User Guide to provide airborne geophysical data to non-technical people. The template includes a description of the project, survey method, how the data can be used, and what the data can show you. The template is internal use only</div><div>1. Airborne Electromagnetic Survey</div>
-
CO<sub>2</sub> enhanced oil recovery (CO<sub>2</sub>-EOR) is a proven technology that can extend the life of oil fields, permanently store CO<sub>2</sub>, and improve the recovery of oil and condensate over time. Although CO<sub>2</sub>-EOR has been used successfully for decades, particularly in the United States, it has not gained traction in Australia to date. In this study, we assemble and evaluate data relevant to CO<sub>2</sub>-EOR for Australia’s key oil and condensate producing basins, and develop a national-scale, integrated basin ranking that shows which regions have the best overall conditions for CO<sub>2</sub>-EOR. The primary goals of our study are to determine whether Australia’s major hydrocarbon provinces exhibit suitable geological and oil characteristics for successful CO<sub>2</sub>-EOR activities and to rank the potential of these basins for CO<sub>2</sub>-EOR. Each basin is assessed based on the key parameters that contribute to a successful CO<sub>2</sub>-EOR prospect: oil properties (API gravity), pressure, temperature, reservoir properties (porosity, permeability, heterogeneity), availability of CO<sub>2</sub> for EOR operations, and infrastructure to support EOR operations. The top three ranked basins are the onshore Bowen-Surat, Cooper-Eromanga and offshore Gippsland Basins, which are all in relatively close proximity to the large east coast energy/oil markets. A significant factor that differentiates these three basins from the others considered in this study is their relatively good access to CO<sub>2</sub> and well-developed infrastructure. The next three most suitable basins are located offshore on the Northwest Shelf (Browse, Carnarvon, and Bonaparte Basins). While these three basins have mostly favourable oil properties and reservoir conditions, the sparse CO<sub>2</sub> sources and large distances involved lead to lower scores overall. The Canning and Amadeus Basins rank the lowest among the basins assessed, being relatively immature and remote hydrocarbon provinces, and lacking the required volumes of CO<sub>2</sub> or infrastructure to economically implement CO<sub>2</sub>-EOR. In addition to ranking the basins for successful implementation of CO<sub>2</sub>-EOR, we also provide some quantification of the potential recoverable oil in the various basins. These estimates used the oil and condensate reserve numbers that are available from national databases combined with application of internationally observed tertiary recovery factors. Additionally, we estimate the potential mass of CO<sub>2</sub> that would be required to produce these potential recoverable oil and condensate resources. In the large oil- and condensate-bearing basins, such as the Carnarvon and Gippsland Basins, some scenarios require over a billion tonnes of CO<sub>2</sub> to unlock the full residual resource, which points to CO<sub>2</sub> being the limiting factor for full-scale CO<sub>2</sub>-EOR development. Even taking a conservative view of the available resources and potential extent of CO<sub>2</sub>-EOR implementation, sourcing sufficient amounts of CO<sub>2</sub> for large-scale deployment of the technology presents a significant challenge. <b>Citation:</b> Tenthorey, E., Kalinowski, A., Wintle, E., Bagheri, M., Easton, L., Mathews, E., McKenna, J., Taggart, I. 2022. Screening Australia’s Basins for CO2-Enhanced Oil Recovery (December 6, 2022). <i>Proceedings of the 16th Greenhouse Gas Control Technologies Conference (GHGT-16) 23-24 Oct 2022</i>, Available at SSRN: <a href="https://ssrn.com/abstract=4294743">https://ssrn.com/abstract=4294743</a> or <a href="http://dx.doi.org/10.2139/ssrn.4294743">http://dx.doi.org/10.2139/ssrn.4294743</a>
-
<div>An Isotopic Atlas of Australia provides a convenient visual overview of age and isotopic patterns reflecting geological processes that have led to the current configuration of the Australian continent, including progressive development of continental crust from the mantle. This poster provides example maps produced from compiled data of multiple geochronology and isotopic tracer datasets from this Isotopic Atlas. It is also a promotion for the release of the Victorian and Tasmanian age compilation datasets (Waltenbeg et al., 2021; Jones et al., 2022).</div>
-
<div>The Paleo- to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin straddling the Northern Territory and Western Australia and is a region of focus for the second phase of Geoscience Australia’s Exploring for the Future (EFTF) program (2020–2024). Hydrocarbon exploration in the Birrindudu Basin has been limited and a thorough assessment of the basin's petroleum potential is lacking due to the absence of data in the region. To fill this data gap, a comprehensive analytical program including organic petrology, programmed pyrolysis and oil fluid inclusion analysis was undertaken on cores from six drill holes to improve the understanding of the basin’s source rock potential and assess petroleum migration. Organic petrological analyses reveal that the primary maceral identified in the cores is alginite mainly originating from filamentous cyanobacteria, while bitumen is the most common unstructured secondary organic matter. New reflectance data based on alginite and bitumen reflectance indicate the sampled sections have reached a thermal maturity suitable for hydrocarbon generation. Oil inclusion analyses provide evidence for oil generation and migration, and hence elements of a petroleum system are present in the basin. Presented at the Australian Energy Producers (AEP) Conference & Exhibition (https://energyproducersconference.au/conference/)
-
<div>A document outlining how geoscience data can be useful for natural resource managers and engagement tool for geoscientists interacting with these people.</div><div><br></div>
-
<div>Geochemical and mineralogical analysis of surficial materials (streams, soils, catchment samples, etc) can provide valuable information about the potential for mineral systems, and the background mineralogical and geochemical variation for a region. However, collecting new samples can be time consuming and expensive, particularly for regional-scale studies. Fortunately, Geoscience Australia has a large holding of archived samples from regional- to continental-scale geochemical studies conducted over the last 50 years, the majority collected at high sampling densities that would be cost-prohibitive today. Although all these samples have already been analysed, their vintage can mean that analyses were obtained by a variety of analytical methods, are of variable quality, and often only available for a small number of elements. As part of the Australian government’s Exploring for the Future program, funding was dedicated to re-analyse ~9,000 samples from these legacy surveys. They were re-analysed for 63 elements (total content) at a single laboratory producing a seamless, internally consistent, high-quality dataset, providing valuable new insights.</div><div><br></div><div>A large number (7,700) of these legacy samples were collected from north Queensland, predominantly in the Cape York – Georgetown area (5,472) — an area with both a wide-range of existing deposit types and known potential for many critical minerals. The sample densities of these studies, up to 1 sample per ~2.5 km2 for Georgetown, makes them directly applicable for determining local- and regional-scale areas of interest for mineral potential. Early interpretation of the Cape York – Georgetown data has identified several locations with stream sediments enriched in both heavy and light rare earth elements (maximum 4000 and 31,800 ppm, respectively), demonstrating the potential of this dataset, particularly for critical minerals. The greater sampling density means that these samples can also provide much more granular geochemical background information and contribute to our understanding of the lower density data commonly used in regional- and national-scale geochemical background studies.</div><div><br></div><div>In addition to the geochemical re-analysis of legacy surface samples, Geoscience Australia has also been undertaking mineral analysis of legacy continental-scale geochemical samples. The National Geochemical Survey of Australia (NGSA) sample archive has been utilised to provide a valuable new dataset. By separating and identifying heavy minerals (i.e., those with a specific gravity >2.9 g/cm3) new information about the mineral potential and provenance of samples can be gained. The Heavy Mineral Map of Australia (HMMA) project, undertaken in collaboration with Curtin University, has analysed the NGSA sample archive, with~81% coverage of the continent. The project has identified over 145 million individual mineral grains belonging to 163 unique mineral species. Preliminary analysis of the data has indicated that zinc minerals and native elements may be useful for mineral prospectivity. Due to the large amount of data generated as part of this HMMA project, a mineral network analysis tool has been developed to help visualise the relationship between minerals and aid in the interpretation of the data. Abstract presented to the Australian Institute of Geoscientists – ALS Friday Seminar Series: Geophysical and Geochemical Signatures of Queensland Mineral Deposits October 2023 (https://www.aig.org.au/events/aig-als-friday-seminar-series-geophysical-and-geochemical-signatures-of-qld-mineral-deposits/)
-
<div>This study investigates the feasibility of mapping potential groundwater dependent vegetation (GDV) at a regional scale using remote sensing data. Specifically, the Digital Earth Australia (DEA) Tasseled Cap Percentiles products, integrated with the coefficient of greenness and/or wetness, are applied in three case study regions in Australia to identify and characterise potential terrestrial and aquatic groundwater dependent ecosystems (GDE). The identified high potential GDE are consistent with existing GDE mapping, providing confidence in the methodology developed. The approach provides a consistent and rapid first-pass approach for identifying and assessing GDEs, especially in remote areas of Australia lacking detailed GDE and vegetation information.</div>
-
<div>Although heavy mineral exploration techniques have been successfully used as exploration vectors to ore deposits around the world, exploration case studies and pre-competitive datasets relevant to Australian conditions are relatively limited. The Heavy Mineral Map of Australia (HMMA) project is a novel analytical campaign to determine the abundance and distribution of heavy minerals (SG>2.9 g/cc) in 1315 floodplain sediment samples collected from catchments across Australia during Geoscience Australia’s National Geochemical Survey of Australia (NGSA) project. Archived NGSA samples, which originated from, on average, 60 to 80 cm depth in floodplain landforms, were sub-sampled and subjected to dense media separation and automated SEM-EDS analysis in the John de Laeter Centre at Curtin University. Mineral assay data from all 1315 drainage samples will be publicly released by the end of 2023. </div><div><br></div><div>An initial data package released in August 2022 contains mineralogical assay data for 223 samples from the Darling–Curnamona–Delamerian (DCD) region of south-eastern Australia. That package identified over 140 heavy minerals from 29 million individual mineral observations. The number of mineral observations generated during the project required development of a novel Mineral Network Analysis (MNA) tool to allow end users to discover, visualise and interpret mineral co-occurrence relationships, potentially useful in exploration vectoring and targeting. The MNA tool can also be used to rapidly search the heavy mineral database to locate observations of potential economic significance. The co-occurrence of Zn-minerals indicative of high-grade metamorphism of base metal mineralisation (e.g., gahnite (Zn-spinel), ecandrewsite (Zn-ilmenite) and zincostaurolite (Zn-aluminosilicate)) from the region surrounding Broken Hill demonstrated the utility of the method. Zn-mineral co-occurrences not associated with known mineralisation were also noted and may represent targeting opportunities. </div><div><br></div><div>Heavy mineral data from parts of Queensland are scheduled for a separate public release in December 2022 and will be presented at the conference. </div> This Abstract was submitted/presented to the 2023 Australian Exploration Geoscience Conference 13-18 Mar (https://2023.aegc.com.au/)
-
<div>Historically, isotopic data are collected at the individual sample level on local- to regional-scale features and are dispersed among decades of both published and unpublished individual academic literature, university theses and geological survey reports, in disparate formats and with widely varying levels of detail. Consequently, it has been difficult to visualise or interrogate the collective value of age and isotopic data at continental-scale. Geoscience Australia’s (GA) continental-scale Isotopic Atlas of Australia (Fraser et al., 2020), breaks this cycle of single-use science by compiling and integrating <strong>multiple radiometric age and isotopic tracer datasets</strong> and making them publicly accessible and useable through GA’s Exploring for the Future (EFTF) Portal.</div><div><br></div><div>The first iteration of a continental-scale Isotopic Atlas of Australia was introduced by Geoscience Australia at the 2019 SGGMP conference in Devonport, Tasmania, through a talk and poster display. In the three years since, progress on this Isotopic Atlas has continued and expanded datasets are now publicly available and downloadable via Geoscience Australia’s Exploring for the Future (EFTF) Geochronology and Isotopes Data Portal. </div>
-
<div>NDI Carrara 1 is a deep stratigraphic borehole that was drilled in 2020 under the MinEx CRC’s National Drilling Initiative (NDI) program in collaboration with Geoscience Australia and the Northern Territory Geological Survey. NDI Carrara 1 is the first stratigraphic test of the recently described Carrara Sub-basin, a Proterozoic aged depocentre located in the South Nicholson region of northwest Queensland and the Northern Territory. The borehole was drilled to a total depth of 1751 m and penetrated a succession of Cambrian aged Georgina Basin carbonate and siliciclastic rocks that unconformably overly a thick succession of Proterozoic age siliciclastic and carbonate-rich sediments. Although drilled on the western flank of the Carrara Sub-basin, NDI Carrara 1 did not penetrate to basement. Interpretation of the L210 deep-crustal seismic survey suggests that further Proterozoic sedimentary packages known from the northern Lawn Hill Platform in northwest Queensland are likely to be found underlying the succession intersected in NDI Carrara 1. The borehole was continuously cored from 283 m to total depth, and an extensive suite of wireline logs was acquired. Geoscience Australia and partners have undertaken an extensive analytical program to understand the depositional, structural, and diagenetic history of the sediments intersected in NDI Carrara 1. This program includes a targeted geomechanical study that aims to characterise the physical properties of these Proterozoic rocks through laboratory analysis of core samples, the results of which are summarised in this data release.</div><div><br></div><div>This data release provides data from new unconfined compressive strength (UCS), single-stage triaxial testing, and laboratory ultrasonic testing for 36 sample plugs from NDI Carrara 1. These tests were performed at the CSIRO Geomechanics and Geophysics Laboratory in Perth, during January to June 2022. The full results as provided by CSIRO to Geoscience Australia are provided as an attachment to this document. </div>