From 1 - 10 / 100
  • This animation illustrates the various stages of development of Hot Rock geothermal resources for electricity generation.

  • Like many of the basins along Australia's eastern seaboard, there is currently only a limited understanding of the geothermal energy potential of the New South Wales extent of the Clarence-Moreton Basin. To date, no study has examined the existing geological information available to produce an estimate of subsurface temperatures throughout the region. Forward modelling of basin structure using its expected thermal properties is the process generally used in geothermal studies to estimate temperatures at depth in the Earth's crust. The process has seen increasing use in complex three-dimensional (3D) models, including in areas of sparse data. The overall uncertainties of 3D models, including the influence of the broad assumptions required to undertake them, are generally only poorly examined by their authors and sometimes completely ignored. New methods are presented in this study which will allow estimates and uncertainties to be addressed in a quantitative and justifiable way. Specifically, this study applies Monte Carlo Analysis to constrain uncertainties through random sampling of statistically congruent populations. Particular focus has been placed on the uncertainty in assigning thermal conductivity values to complex and spatially extensive geological formations using only limited data. As a case study these new methods are then applied to the New South Wales extent of the Clarence-Moreton Basin. The geological structure of the basin has been modelled using data from existing petroleum drill holes, surface mapping and information derived from previous studies. A range of possible lithological compositions was determined for each of the major geological layers through application of compositional data analysis. In turn, a range of possible thermal conductivity values was determined for the major lithology groups using rock samples held by the NSW Department of Primary Industries (DPI). These two populations of values were then randomly sampled to establish 120 different forward models, the results of which have been interpreted to present the best estimate of expected subsurface temperatures, and their uncertainties. These results suggest that the Clarence-Moreton Basin has a moderate geothermal energy potential within an economic drilling depth. This potential however, displays significant variability between different modelling runs, which is likely due to the limited data available for the region. While further work could improve these methods, it can be seen from this study that uncertainties can provide a means by which to add confidence to results, rather than undermine it.

  • Legacy product - no abstract available

  • Examination of developing geothermal exploration techniques and a geothermal play systems framework in Australia.

  • This record is the second in a series of heat flow determinations released by Geoscience Australia. Six new determinations, three from Western Australia and three from South Australia, are included in this record.

  • This record is the third in a series of heat flow determinations released by Geoscience Australia. Data in this record covers New South Wales, Northern Territory and Western Australia.

  • Improvements to the Australian Crustal Temperature Image

  • This paper focuses on the thermal modelling conducted in the Cooper Basin and Tattapani hot spring regions in order to highlight the latest work being done by Geoscience Australia to improve our understanding of the temperature and fluid flow fields in areas away from direct measurements.

  • This volume is a compilation of Extended Abstracts presented at the 2010 Australian Geothermal Energy Conference, 17-19 November 2010, Adelaide Convention Centre, Adelaide, organised by the Australian Geothermal Energy Association and the Australian Geothermal Energy Group.

  • The geothermal industry has expanded rapidly in Australia, with 48 companies holding 385 license areas as of August 2009, with 10 listed on the ASX and with work programs excluding upscaling valued at ~AU$1.5B to 2013. Projects range from early to advanced exploration, proof-of-concept and pilot stages. Targets are for Hot Rock and Hot Sedimentary Aquifer resources, for the purposes of electricity generation or direct use applications. Ground source heat pump technology continues to struggle to attain the recognition it deserves.