From 1 - 10 / 92
  • The CO2CRC Otway Project in southwestern Victoria, Australia has injected over 17 months 65 445 tonnes of a mixed carbon dioxide-methane fluid into the water leg of a depleted natural gas reservoir at a depth of approximately 2km. Pressurized sub-surface fluids were collected from the Naylor-1 observation well using a tri-level U-tube sampling system located near the crest of the fault-bounded anticline trap, 300 metres up-dip of the CRC-1 gas injection well. Relative to the pre-injection gas-water contact (GWC), only the shallowest U-tube initially accessed the residual methane gas cap. The pre-injection gas cap at Naylor-1 contains CO<sub>2</sub> at 1.5 mol% compared to 75.4 mol% for the injected gas from the Buttress-1 supply well and its CO<sub>2</sub> is depleted in <sup>13</sup>C by 4.5%<sub>0</sub> VPDB compared to the injected supercritical CO<Sub>2</sub>. Additional assurance of the arrival of injected gas at the observation well is provided by the use of the added tracer compounds, CD<sub>4</sub>, Kr and SF<sub>6</sub> in the injected gas stream. Lessons learnt from the CO2CRC Otway Project have enabled us to better anticipate the challenges for rapid deployment of carbon dioxide in a commercial environment at much larger scales.

  • The Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) Otway Project in the onshore Otway Basin, Victoria, is Australia's first pilot project for the long term sequestration of CO2. The Otway Project has injected 65,445 tonnes of a mixed CO2-CH4 supercritical fluid (77 mol% CO2, 20 mol% CH4, 3 mol% of minor wet gases and N2) some 2000 m below the surface into the Waarre Formation, which is capped by the Belfast Mudstone regional seal. The site has been comprehensively characterised by a multidisciplinary team and the risk analysis has shown the likelihood of leakage out of the injection horizon, let alone to the land surface, to be exceedingly low. Nevertheless, the objectives of the CO2CRC through the Otway Project are not only to demonstrate safe CO2 injection, but also to develop new methodologies for monitoring and verification (M&V) of carbon storage that might apply to future commercial scale injection. At Otway, this involves M&V at the reservoir level and Assurance Monitoring, in the shallow subsurface (aquifers and soils) and the atmosphere. The groundwater monitoring system represents the most comprehensive system for monitoring freshwater in the vicinity of a CO2 storage demonstration to date. Monitoring the groundwater is of particular significance in demonstrating the ongoing integrity of natural resources to the general community.

  • This GHGT-12 conference paper hightlights some results of GA's work on "Regional assessment of the CO2 storage potential of the Mesozoic sucession in the Petrel Sub-basin, Northern Territory, Australia. Record 2014/11".

  • Australia has become the first country to offer commercial offshore acreage for the purpose of storing greenhouse gases in geological formations. Ten offshore areas in five basins/sub-basins are open for applications for Assessment Permits, which will allow exploration in those areas for suitable geological formations and conditions for storage of greenhouse gases (predominantly CO2). The acreage was released on the 27th March 2009 under the Offshore Petroleum and Greenhouse Gas Storage Act 2006. The acreage release is modelled on Australia's annual Offshore Petroleum Acreage Release; applicants can apply for an Assessment Permit for any of the ten areas, which is approximately equivalent to an exploration permit in petroleum terms. Applications will be assessed on a work-bid basis and other selection criteria outlined in the Regulations and Guidance Notes for Applicants. Following the assessment period, project proponents may apply for an injection license (equivalent to a production license in the petroleum industry) to inject and store greenhouse gas substances in the permit area. The areas offered in this first round of Acreage Release include five areas located within the Gippsland and Otway basins, offshore Victoria and South Australia, and the other five areas are located in the Vlaming and Petrel sub-basins, offshore Western Australia and the Northern Territory. The offshore areas offered for GHG geological storage assessment are significantly larger than their offshore petroleum counterparts to account for, and fully contain, the expected migration pathways of the injected GHG substances.

  • Covering an area of approximately 247 000km2, the Galilee Basin is a significant feature of central Queensland. Three main depocentres contain several hundred metres of Late Carboniferous to Middle Triassic sediments. Sedimentation in the Galilee Basin was dominated by fluvial to lacustrine depositional systems. This resulted in a sequence of sandstones, mudstones, siltstones, coals and minor tuff in what was a relatively shallow intracratonic basin with little topographic relief. Forty years or more of exploration in the Galilee Basin has failed to discover any economic accumulations of hydrocarbons, despite the presence of apparently fair to very good reservoirs and seals in both the Permian and Triassic sequence. Despite some relatively large distances (upwards of 500km) between sources and sinks, previous and ongoing work on the Galilee Basin suggests that it has potential to sequester a significant amount of Queensland's carbon dioxide emissions. Potential reservoirs include the Early Permian Aramac Coal Measures, the Late Permian Colinlea Sandstone and the Middle Triassic Clematis Sandstone. These are sealed by several intraformational and local seals as well as the regional Triassic Moolayember Formation. With few suitable structural traps and little faulting throughout the Galilee sequence, residual trapping within saline reservoir is the most likely mechanism for storing CO2. The current study is aimed at building a sound geological model of the basin through activities such as detailed mapping, well correlation, and reservoir and seal analysis leading to reservoir simulations to gain a better understanding of the basin.

  • High-CO2 gas fields serve as important analogues for understanding various processes related to CO2 injection and storage. The chemical signatures, both within the fluids and the solid phases, are especially useful for elucidating preferred gas migration pathways and also for assessing the relative importance of mineral dissolution and/or solution trapping efficiency. In this paper, we present a high resolution study focussed on the Gorgon gas field and associated Rankin trend gases on Australia's Northwest Shelf of Australia. The Gorgon field is characterized by a series of stacked reservoirs (Figure 1), and is therefore well placed to characterize CO2 migration, dissolution and reaction by looking at geochemical signatures in the different reservoirs. Hydrological data at the Gorgon field also suggests that many of the major faults possess very low transmissivities, which should prevent or limit mixing of reservoir fluids with different chemical imprints. The gas data we present here reveal correlatable trends for mole %-CO2 and --C CO2 both areally and vertically as observed by Edwards et al. (2007). We suggest that the observed relationships are imparted due to mineral carbonation reactions that occurred along the CO2 migration pathway. These results have important implications for carbon storage operations and suggest that under certain conditions mineral sequestration might occur over longer migration distances and on shorter timescales than previously thought.

  • The economics of the storage of CO2 in underground reservoirs in Australia have been analysed as part of the Australian Petroleum Cooperative Research Centre's GEODISC program. The analyses are based on cost estimates generated by a CO2 storage technical / economic model developed at the beginning of the GEODISC project. They also rely on data concerning the characteristics of geological reservoirs in Australia. The uncertainties involved in estimating the costs of such projects are discussed and the economics of storing CO2 for a range of CO2 sources and potential storage sites across Australia are presented. The key elements of the CO2 storage process and the methods involved in estimating the costs of CO2 storage are described and the CO2 storage costs for a hypothetical but representative storage project in Australia are derived. The effects of uncertainties inherent in estimating the costs of storing CO2 are shown. The analyses show that the costs are particularly sensitive to parameters such as the CO2 flow rate, the distance between the source and the storage site, the physical properties of the reservoir and the market prices of equipment and services. Therefore, variations in any one of these inputs can lead to significant variation in the costs of CO2 storage. Allowing for reasonable variations in all the inputs together in a Monte Carlo simulation of any particular site, then a large range of total CO2 storage costs is possible. The effect of uncertainty for the hypothetical representative storage site is illustrated. The impact of storing other gases together with CO2 is analysed. The other gases include methane, hydrogen sulphide, nitrogen, nitrous oxides and oxides of sulphur, all of which potentially could be captured together with CO2. The effect on storage costs when varying quantities of other gases are injected with the CO2 is shown. Based on the CO2 storage estimates and the published costs capturing CO2 from industrial processes, the econ

  • Methane is present in all coals, but a number of geological factors influence the potential economic concentration of gas. The key factors are (1) depositional environment, (2) tectonic and structural setting, (3) rank and gas generation, (4) gas content, (5) permeability, and (6) hydrogeology. Commercial coal seam gas production in Queensland has been entirely from the Permian coals of the Bowen Basin, but the Jurassic coals of the Surat and Clarence-Moreton basins are poised to deliver commercial gas volumes. Depositional environments range from fluvial to delta plain to paralic and marginal marine coals in the Bowen Basin are laterally more continuous than those in the Surat and Clarence-Moreton basins. The tectonic and structural settings are important as they control the coal characteristics both in terms of deposition and burial history. The important coal seam gas seams were deposited in a foreland setting in the Bowen Basin and an intracratonic setting in the Surat and Clarence-Moreton basins. Both of these settings resulted in widespread coal deposition. The complex burial history of the Bowen Basin has resulted in a wide range of coal ranks and properties. Rank in the Bowen Basin coal seam gas fields varies from vitrinite reflectane of 0.55% to >1.1% Rv and from Rv 0.35-0.6% in the Surat and Clarence-Moreton basins in Queensland. High vitrinite coals provide optimal gas generation and cleat formation. The commercial gas fields and the prospective ones contain coals with >60% vitrinite. Gas generation in the Queensland basins is complex with isotopic studies indicating that biogenic gas, thermogenic gas and mixed gases are present. Biogenic processes occur at depths of up to a kilometre. Gas content is important, but lower gas contents can be economic if deliverability is good. Free gas is also present. Drilling and production techniques play an important role in making lower gas content coals viable. Since the Bowen and Surat basins are in a compressive regime, permeability becomes a defining parameter. Areas where the compression is offset by tensional forces provide the best chances for commercial coal seam gas production. Tensional setting such as anticline or structural hinges are important plays. Hydrodynamics control the production rate though water quality varies between the fields.

  • The geological storage of carbon dioxide (CO2) is the process whereby CO2 captured from power plants or other industrial facilities is transported by pipeline to a suitable location and then injected under pressure into a deep geological reservoir formation, where it remains permanently trapped and prevented from entering the atmosphere. The processes by which it is retained in the subsurface are generally those that have trapped oil, gas and naturally generated CO2 for millions of years. The geological formations that can be utilised for this trapping have the same characteristics as those that are able to act as reservoir rocks for petroleum. They have good porosity and permeability and have an overlying sealing formation, which will prevent the trapped fluids migrating out of the storage reservoir and possibly escaping to the surface. In addition, because of the phase behaviour of CO2, efficient storage requires that they are stored at depths greater than 800 below the surface. Unlike oil and gas, which rely primarily on a three dimensional structural trap to prevent them from ultimately rising to the surface, there are additional trapping mechanisms for CO2. Given a sufficiently long migration path within a formation, CO2 will ultimately be rendered immobile by dissolution into the formation water, residual trapping and potentially, over longer time scales, mineralisation. As groundwaters at these depths are generally saline, this type of storage is often termed deep saline aquifer storage. A recent nationwide review by Commonwealth and State geological surveys, as part of the Carbon Storage Taskforce, rated the suitability of geological basins across Australia for geological storage of CO2. The most geologically suitable basins are the offshore Gippsland and North Perth basins but several onshore basins also rate highly. These include the Eromanga, Cooper, Bowen, Galilee, Surat, Canning and Otway basins. The Victorian Government has recently released area for greenhouse gas storage exploration in the Gippsland Basin and the Queensland Government in the Galilee and Surat basins. The aquifers within these basins provide groundwater for human consumption, agriculture, mining, recreation and groundwater dependent ecosystems. The Surat Basin also contains oil and gas accumulations that are being exploited by the onshore petroleum industry. Understanding the existing the groundwater's chemistry and the connectivity between aquifers in the context of its current use is essential in order to determine whether prospective aquifers could be used for geological storage of CO2 without compromising other activities. The potential risks to groundwater from the potential migration of CO2 and changes to groundwater properties that might be expected will also be discussed. Current data gaps include poor hydrogeochemical data coverage for the deeper aquifers and particularly limited data on trace metals and organics. A comparison with experiences learned from enhanced oil recovery using CO2 in North America and the CO2CRC's pilot CO2 injection project in Western Victoria will illustrate some of the unique differences and opportunities for geological storage of CO2 in Australia. Oral presentation at "Groundwater 2010" conference, 31 October - 4th November 2010, Canberra

  • The first large-scale projects for geological storage of carbon dioxide on the Australian mainland are likely to occur within sedimentary sequences that underlie or are within the Triassic-Cretaceous, Great Artesian Basin (GAB) aquifer sequence. Recent national1 and state2 assessments have concluded that certain deep formations within the GAB show considerable geological suitability for the storage of greenhouse gases. These same formations contain trapped methane and naturally generated CO2 stored for millions of years. In July 2010, the Queensland government released exploration permits for Greenhouse Gas Storage in the Surat and Galilee basins.An important consideration in assessing the potential economic, environmental, health and safety risks of such projects is the potential impact CO2 migrating out of storage reservoirs could have on overlying groundwater resources. The risk and impact of CO2 migrating from a greenhouse gas storage reservoir into groundwater cannot be objectively assessed without knowledge of the natural baseline characteristics of the groundwater within these systems. Due to the phase behaviour of CO2, geological storage of carbon dioxide in the supercritical state requires depths greater than 800m, but there are few hydrogeochemical studies of these deeper aquifers in the prospective storage areas. Historical hydrogeochemical data are compiled from various State and Federal Government agencies. In addition, hydrogeochemical information is compiled from thousands of petroleum well completion reports in order to obtain more information on the deeper aquifers, not typically used for agriculture or human consumption. The data are passed through a QC procedure to check for mud contamination and to ascertain whether a representative sample had been collected. The large majority of the samples proved to be contaminated but a small selection passed the QC criteria. The full dataset is available for download from GA's Virtual Dataroom. Oral presentation at "Groundwater 2010" Conference, 31 October - 4 November 2010, Canberra