From 1 - 10 / 22
  • The aim of this document is to * outline the information management process for inundation modelling projects using ANUGA * outline the general process adopted by Geoscience Australia in modelling inundation using ANUGA * allow a future user to understand (a) how the input and output data has been stored (b) how the input data has been checked and/or manipulated before use (c) how the model has been checked for appropriateness

  • The purpose of this study is to determine the potential of tsunami inundation from historical and potential submarine mass failures of the NSW coast based on the findings from the October 2006 Continental Slope Survey conducted by GA. The learnings from this study are intended for use by the Australian Tsunami Warning Project and NSW emergency managers.

  • 40 years atmospheric reanalysis for Australia region. http://www.ecmwf.int/products/data/archive/descriptions/e4/index.html

  • 3D visualisation of the Mount Isa Crustal Seismic Survey

  • This metadata relates to the ANUGA hydrodynamic modelling results for Busselton, south-west Western Australia. The results consist of inundation extent and peak momentum gridded spatial data for each of the ten modelling scenarios. The scenarios are based on Tropical Cyclone (TC) Alby that impacted Western Australia in 1978 and the combination of TC Alby with a track and time shift, sea-level rise and riverine flood scenarios. The inundation extent defines grid cells that were identified as wet within each of the modelling scenarios. The momentum results define the maximum momentum value recorded for each inundated grid cell within each modelling scenario. Refer to the professional opinion (Coastal inundation modelling for Busselton, Western Australia, under current and future climate) for details of the project.

  • The Cooper Basin is an upper Carboniferous-Middle Triassic intracratonic basin in northeastern South Australia and southwestern Queensland (Gravestock et al., 1998; Draper, 2002; McKellar, 2013; Carr et al., 2016; Hall et al., 2015a). The basin is Australia's premier onshore hydrocarbon producing province and is nationally significant in providing gas to the eastern Australian gas market. The basin also hosts a range of unconventional gas play types within the Permian Gidgealpa Group, including basin-centred gas and tight gas accumulations, deep dry coal gas associated with the Patchawarra and Toolachee formations, the Murteree and Roseneath shale gas plays and deep coal seam gas in the Weena Trough (e.g. Goldstein et al., 2012; Menpes et al., 2013; Greenstreet, 2015). The principal source rocks for these plays are the Permian coals and coaly shales of the Gidgealpa Group (Boreham & Hill, 1998; Deighton et al., 2003; Hall et al., 2016a). Mapping the petroleum generation potential of these source rocks is critical for understanding the hydrocarbon prospectivity of the basin. Geoscience Australia, in conjunction with the Department of State Development, South Australia and the Geological Survey of Queensland, have recently released a series of studies reviewing the distribution, type, quality, maturity and generation potential of the Cooper Basin source rocks (Hall et al., 2015a; 2016a; 2016b, 2016c; 2016d). Petroleum systems models, incorporating new Cooper Basin kinetics (Mahlstedt et al., 2015), highlight the variability in burial, thermal and hydrocarbon generation histories for each source rock across the basin (Hall et al., 2016a). A Geoscience Australia record 'Cooper Basin Petroleum Systems Analysis: Regional Hydrocarbon Prospectivity of the Cooper Basin, Part 3' providing full documentation of the model input data, workflow and results is currently in press. This work provides important insights into the hydrocarbon prospectivity of the basin (Hall et al., 2015b; Kuske et al., 2015). This product contains the working Cooper Basin Trinity-Genesis-KinEx petroleum systems model used to generate the results presented in these studies. This includes maps describing thickness, TOC and original HI for the following Permian source intervals: Toolachee Fm coals and coaly shales Daralingie Fm coals and coaly shales Roseneath Shale Epsilon Fm coals and coaly shales Murteree Shale Patchawarra Fm coals and coaly shales This model is designed for use as a regional scale hydrocarbon prospectivity screening tool. Model resolution is not high enough for this product to be used for sub-basin to prospect scale analysis, without further modification. However, the model provides a regional framework, into which more detailed prospect scale data may be embedded. The systematic workflow applied demonstrates the importance of integrated geochemical and petroleum systems modelling studies as a predictive tool for understanding the petroleum resource potential of Australia's sedimentary basins.

  • The aim of this document is to * outline the general process adopted by Geoscience Australia in modelling storm surge inundation for projects conducted in collaboration with Australian and State Government planning agencies * allow discoverability of all data used to generate the products for the collaborative projects as well as internal activities

  • The aim of this document is to: * outline the general process adopted by Geoscience Australia in modelling tsunami inundation for a range of projects conducted in collaboration with Australian and State Government emergency management agencies * allow discoverability of all data used to generate the products for the collaborative projects as well as internal activities.

  • The project modelled the tsunami inundation to selected sites in South East Tasmania based on a Mw 8.7 earthquake on the Puysegur Trench occurring at Mean Sea Level. As yet, there is no knowledge of the return period for this event. The project was done in collaboration with Tasmania State Emergency Services as part of a broader project that investigated tsunami history through palaeotsunami investigations. The intent was to build the capability of staff within Tasmania Government to undertake the modelling themselves. Formal modelling of the tsunami inundation occurred through national project funding.

  • X3D Model and Visualisation of the Hydrostratigraphic System in the Hodgson and Kings Creek Sub-Catchments