GP
Type of resources
Keywords
Publication year
Service types
Topics
-
The annual Asia Pacific Regional Geodetic Project (APRGP) GPS campaign is an activity of the Geodetic Reference Frame Working Group (WG) of the Regional Committee of United Nations Global Geospatial Information Management for Asia and the Pacific (UN-GGIM-AP). This document describes the data analysis of the APRGP GPS campaign undertaken between the 16th and 22nd of September 2018. Campaign GPS data collected at 101 sites in ten countries across the Asia Pacific region were processed using version 5.2 of the Bernese GNSS Software in a regional network together with selected IGS (International GNSS Service) sites. The GPS solution was constrained to the ITRF2014 reference frame by adopting IGS14 coordinates on selected IGS reference sites and using the final IGS earth orientation parameters and satellite ephemerides products. The average of the root mean square repeatability of the station coordinates for the campaign was 1.8 mm, 1.6 mm and 5.4 mm in north, east and up components of station position respectively.
-
This record contains the processed Ground Penetrating Radar (GPR) data (.segy), field notes, and shapefile collected on fieldwork at Adelaide Metropolitan Beaches, South Australia for the Bushfire and Natural Hazards CRC Project, Resilience to Clustered Disaster Events on the Coast - Storm Surge. The data was collected from 16-19 February 2015 using a MALA ProEx GPR system with 250 MHz shielded, 100 MHz unshielded and 50 MHz unshielded antennaes. The aim of the field work was to identify and define a minimum thickness for the beach and dune systems, and where possible depth to any identifiable competent substrate (e.g. bedrock) or pre-Holocene surface which may influence the erosion potential of incident wave energy. Surface elevation data was co-acquired and used to topographically correct the GPR profiles. This dataset is published with the permission of the CEO, Geoscience Australia.
-
The national measurement system in Australia ensures a basis for legally traceable, consistent and internationally recognised measurements. With the growing societal dependency on GPS, the need for the legal traceability of GPS positions with respect to the Australian Datum - the Geocentric Datum of Australia 1994 (GDA94) -- has become increasingly apparent. In the interest of ensuring consistency of positions derived from private and government Continuously Operating Reference Stations (CORS),Geoscience Australia maintains an appointment as a legal metrology authority in accordance with the National Measurement Act 1960 and provides legally traceable positions. This presentation will overview Geoscience Australia's approach to the legal traceability of GPS positions, the process of legal certification including: (1) the basic requirements for requesting certification; (2) quality standards and the quality management system of the position verification processes. The structured maintenance and continual improvement program for the verifying laboratory will also be introduced.
-
This record contains processed and topographically corrected Ground Penetrating Radar (GPR) data (.segy, .bmp), and a summary shapefile collected on fieldwork at Adelaide Metropolitan Beaches, South Australia for the Bushfire and Natural Hazards CRC Project, Resilience to Clustered Disaster Events on the Coast - Storm Surge. The data was collected from 16-19 February 2015 using a MALA ProEx GPR system with a 250 MHz shielded antennae. The aim of the field work was to identify and define a minimum thickness for the beach and dune systems, and where possible depth to any identifiable competent substrate (e.g. bedrock) or pre-Holocene surface which may influence the erosion potential of incident wave energy. Surface elevation data was co-acquired and used to topographically correct the GPR profiles. This dataset is published with the permission of the CEO, Geoscience Australia.
-
This record contains processed and topographically corrected Ground Penetrating Radar (GPR) data (.segy, .bmps) and summary shapefile collected on fieldwork at Old Bar Beach, NSW for the Bushfire and Natural Hazards CRC Project, Resilience to Clustered Disaster Events on the Coast - Storm Surge. The data was collected from 3 - 5 March 2015 using a MALA ProEx GPR system with a 250 MHz shielded antennae. The aim of the field work was to identify and define a minimum thickness for the beach and dune systems, and where possible depth to any identifiable competent substrate (e.g. bedrock) or pre-Holocene surface which may influence the erosion potential of incident wave energy. Surface elevation data was co-acquired and used to topographically correct the GPR profiles. This dataset is published with the permission of the CEO, Geoscience Australia.
-
The Criteria Assessment tool takes the input path or area created by the user and the input variables chosen to generate a heat map surface, KML surface, KMZ surface and PDF Report. This service is specifically for use within the Carbon Capture and Storage application.
-
The Identify_Tool service includes the key set of infrastructure layers included in the LeastCostPath and ClipAndZip geoprocessing tools. The indentify query uses a dynamic tolerance and returns features including geometry as JSON.
-
The Clip and Zip tool takes an input polygon extent as WKT input and clips required featureclasses listed. The data is referenced from its own database with all layers projected to 4326 spatial reference. The output is a zipped file geodatabase with a copyright text file included.
-
The Print Service provides PDF map prints via an online interface. This service prints detailed PDF maps, including scale bar and marginalia.
-
This record contains the raw Ground Penetrating Radar (GPR) data and scanned field notes collected on fieldwork at Old Bar and Boomerang Beaches, NSW for the Bushfire and Natural Hazards CRC Project, Resilience to Clustered Disaster Events on the Coast - Storm Surge. The data was collected from 3 - 5 March 2015 using a MALA ProEx GPR system with 250 MHz shielded and 100 MHz unshielded antennaes. The aim of the field work was to identify and define a minimum thickness for the beach and dune systems, and where possible depth to any identifiable competent substrate (e.g. bedrock) or pre-Holocene surface which may influence the erosion potential of incident wave energy. Surface elevation data was co-acquired and used to topographically correct the GPR profiles.