From 1 - 10 / 18
  • The gnssanalysis Python package is designed to provide the public with a source of useful python functions and classes that help with processing of GNSS observations. The functionality found within the package includes: - reading of many standard file formats commonly used in the geodetic community including SP3, SNX, RNX, CLK, PSD, etc. into pandas dataframes (Also writing certain file formats) - transformation of data, for example datetime conversions, helmert inversions, rotations, transforming geodata from XYZ to longitude-latitude-altitude, etc. - functions for the download of standard files and upload to other sources (e.g. s3)

  • This collection includes Global Navigation Satellite System (GNSS) observations from long-term continuous or semi continuous reference stations at multiple locations across Australia and its external territories, including the Australian Antarctic Territory. <b>Value:</b> The datasets within this collection are provided on an openly accessible basis to support a myriad of scientific and societal positioning applications in Australia. These include the development and maintenance of the Australian Geospatial Reference System (AGRS); the densification of the International Terrestrial Reference Frame (ITRF); crustal deformation studies; atmospheric studies; and the delivery of precise positioning services to Australian businesses. <b>Scope: </b> Data from reference stations across Australia and its external territories, including the Australian Antarctica Territory. <b>Access: </b> To access the datasets and query station information visit the <a href="https://gnss.ga.gov.au./">Global Navigation Satellite System Data Centre</a>

  • This collection includes Global Navigation Satellite System (GNSS) observations from short-term occupations at multiple locations across Australia and its external territories, including the Australian Antarctic Territory. <b>Value: </b> The datasets within this collection are available to support a myriad of scientific applications, including research into the crustal deformation of the Australian continent. <b>Scope: </b> Data from selected areas of interest across Australia and its external territories, including the Australian Antarctic Territory. Over time there has been a focus on areas with increased risk of seismic activity or areas with observed natural or anthropogenic deformation. <b>Access: </b> The datasets within this collection are currently stored offline, to access please send a request to gnss@ga.gov.au

  • <div>Within the preparation for the release of the International Terrestrial Reference Frame 2020, the International GNSS Service (IGS) analysis centers (ACs) issued the results of the third reprocessing campaign (IGS Repro 3) of all the GNSS network solutions backwards starting from 1994. For the first time, the IGS reprocessing products include not just GPS and GLONASS, but also the Galileo constellation. In this study, we show the methodology and results of the orbit combination provided by the IGS Analysis Center Coordinator (IGS ACC) at Geoscience Australia. The quality of the provided combined orbit products was cross-checked with the individual IGS Repro3 AC contributions. The internal consistency of the individual AC solutions with the combined orbits was assessed based on the root mean square of the 3D orbit differences. In 2020, the mean consistency of the combination is at the level of 9, 23, and 15 mm for GPS, GLONASS, and Galileo, respectively. The external validation was performed using Satellite Laser Ranging (SLR) observations. We proposed a novel approach to handling detector-specific biases in the results of SLR validation, reducing the standard deviation of SLR residuals by up to 15% for Galileo FOC satellites. The method is based on bias referencing to single-photon SLR stations that are not affected by the retroreflector signature effect. The proposed approach increased the internal consistency of the SLR dataset, facilitating the detection of orbit modeling issues. The standard deviation of SLR residuals of the best individual solution versus the combined equals 13/14, 15/16, 17/16, 16/16 mm for Galileo-FOC, -IOV, GLONASS-K1B, -M, respectively. Therefore, the combined solution can be considered equal or slightly better in quality compared to the best individual AC solutions. Searching for patterns in SLR residuals for different satellite-Sun-Earth geometries reveals that some issues in orbit modeling are not fully diminished for individual ACs. Eventually, we proved that the delivered combined orbit product may be considered the best solution overall. The combined solution benefits from the best individual solutions for each satellite type.</div> <b> Citation:</b> Zajdel, R., Masoumi, S., Sośnica, K. et al. Combination and SLR validation of IGS Repro3 orbits for ITRF2020. J Geod 97, 87 (2023). https://doi.org/10.1007/s00190-023-01777-3

  • This GA Record reports findings regarding the absolute vertical rate of movement (i.e. the rate at which the land is moving up or down with respect to the centre of the Earth) of 13 Pacific Island tide gauges over the period 2003 – 2018 based on the analysis of Global Navigation Satellite System (GNSS) data and levelling data.

  • <div>GNSS, one of which is the more familiar US Global Positioning System (GPS), have become part of our everyday life… in our cars, phones and even smartwatches – helping us know where we are and where we want to go. Join me to explore advances in the analysis of GNSS in an Australia context.</div><div>Knowing our ‘place in space’ is an inherent human emotive connection and Global Navigation Satellite Systems (GNSS), as a technology, has become prevalent in the world around us, and as a society we have become reliant on basic functions such as knowing where we are, and how to navigate from one place to another.</div><div>Advances in analysis of GNSS observations has led to us being able to determine a location down to the sub-millimetre; calculate precise orbital arcs of low earth satellite platforms that are exploding in numbers for innovative communication technologies and earth observation; define how wet the troposphere is, and assist weather forecasting models; and even provide real-time precise positioning at the centimetre-level for a variety of applications.</div><div><br></div><div>This presentation will take you through advances in positioning and navigation technologies through the lens of GNSS products and services based at Geoscience Australia, and how these benefit everyday Australians.</div><div><br></div>

  • <div>The annual Asia Pacific Regional Geodetic Project (APRGP) GPS campaign is an activity of the Geodetic Reference Frame Working Group (WG) of the Regional Committee of United Nations Global Geospatial Information Management for Asia and the Pacific (UN-GGIM-AP). This document describes the data analysis of the APRGP GPS campaign undertaken between the 11th and 17nd of September 2022. Campaign GPS data collected at 116 sites in seven countries across the Asia Pacific region were processed using version 5.2 of the Bernese GNSS Software in a regional network together with selected IGS (International GNSS Service) sites. The GPS solution was constrained to the ITRF2014 reference frame by adopting IGS14 coordinates on selected IGS reference sites and using the final IGS earth orientation parameters and satellite ephemerides products. The average of the root mean square repeatability of the station coordinates for the campaign was 2.0 mm, 2.4 mm and 7.5 mm in north, east and up components of station position respectively.</div>

  • AUSPOS is Geoscience Australia's on-line static GPS positioning service, providing user access to a state-of-art analysis system via a simple web-interface. Since its launch in 2001, AUSPOS has continued to be a widely used tool for the online processing of geodetic GPS data for surveying, mapping, geodetic, geophysical, hydrographical, mining, construction, military and other applications. On 20 March 2011, Geoscience Australia released an upgraded version of the service. The upgraded AUSPOS implements recent advances in analysis software and strategies, the reference frame ITRF2008, AusGeoid09 and the latest transformation parameters between ITRF2008 and GDA94. AUSPOS now delivers precise ITRF2008 coordinates to users within 3-5 minutes while continuing to provide Australian users with access to GDA94 coordinates and derived AHD heights to the highest achievable accuracy by simultaneously processing up to 7 consecutive days of user-supplied GPS data collected from up to 20 sites. The upgraded AUSPOS also provides more realistic coordinate uncertainty of its solutions using a recently developed assessment method of coordinate uncertainty. The assessment method is based on the duration of a data set and the density of reference station network.

  • <div>The annual Asia Pacific Regional Geodetic Project (APRGP) GPS campaign is an activity of the Geodetic Reference Frame Working Group (WG) of the Regional Committee of United Nations Global Geospatial Information Management for Asia and the Pacific (UN-GGIM-AP). This document describes the data analysis of the APRGP GPS campaign undertaken between the 10th and 17nd of September 2023. Campaign GPS data collected at 124 sites in nine countries across the Asia Pacific region were processed using version 5.2 of the Bernese GNSS Software in a regional network together with selected IGS (International GNSS Service) sites. The GPS solution was constrained to the ITRF2020 reference frame by adopting IGS20 coordinates on selected IGS core reference sites and using the final IGS earth orientation parameters and satellite ephemerides products. The average of the root mean square repeatability of the station coordinates for the campaign was 2.5 mm, 2.5 mm and 6.9 &nbsp;mm in north, east and up components of station position respectively.</div><div><br></div>

  • Geoscience Australia (GA) manages a network of 150 Continuously Operating Reference Stations (CORS) across Australia, Antarctica and the Pacific. In addition, GA supports data archiving and distribution of a further 450 CORS that contribute to the Asia-Pacific Reference Frame (APREF) project. The primary objectives of this network have been to maintain the National Geodetic Reference System and support scientific endeavours. GA is currently shifting the focus of our GNSS networks from a scientific model to one which supports both science and industry. This requires GA to meet higher standards of data availability and accessibility, latency and metadata accuracy. Further to this GA recognises the need to take advantage of Australia¿s unique geographical location and move towards providing access to multi-GNSS data in modern formats such as RINEX 3 and RTCM 3.2 (MSM). This presentation looks at the current state of the Australian CORS network and highlights our planned transition and expected challenges in moving from a scientific model to an operational model supporting modern data format and streamlined metadata.