From 1 - 10 / 138
  • The Historical Bushfire Boundaries service represents the aggregation of jurisdictional supplied burnt areas polygons stemming from the early 1900's through to 2022 (excluding the Northern Territory). The burnt area data represents curated jurisdictional owned polygons of both bushfires and prescribed (planned) burns. To ensure the dataset adhered to the nationally approved and agreed data dictionary for fire history Geoscience Australia had to modify some of the attributes presented. The information provided within this service is reflective only of data supplied by participating authoritative agencies and may or may not represent all fire history within a state.

  • This Galilee Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. This Galilee Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Galilee Basin is a large intracratonic sedimentary basin in central Queensland. The basin contains a variably thick sequence of Late Carboniferous to Middle Triassic clastic sedimentary rocks dominated by laterally extensive sandstone, mudstone and coal. These rocks were mostly deposited in non-marine environments (rivers, swamps and lakes), although there is minor evidence for marginal marine settings such as deltas and estuaries. Sedimentation did not occur continuously across the approximately 90 million year history of basin development, and intervals of episodic compression, uplift and erosion were marked by distinct depositional breaks. Over much of the surface area of the Galilee Basin the main aquifers targeted for groundwater extraction occur in the younger rocks and sediments that overlie the deeper sequence of the Galilee Basin. The primary aquifers that supply groundwater in this region are those of the Eromanga Basin, as well as more localised deposits of Cenozoic alluvium. However, in the central-east and north-east of the Galilee Basin, the Carboniferous to Triassic rocks occur at or close to surface and several aquifer units supply significant volumes of groundwater to support pastoral and town water supplies, as well as being the water source for several spring complexes. The three main groundwater systems identified in the Galilee Basin occur in the 1. Clematis Group aquifer, 2. partial aquifer of the upper Permian coal measures (including the Betts Creek beds and Colinlea Sandstone), and 3. aquifers of the basal Joe Joe Group. The main hydrogeological units that confine regional groundwater flow in the Galilee Basin are (from upper- to lower-most) the Moolayember Formation, Rewan Formation, Jochmus Formation and Jericho Formation. However, some bores may tap local groundwater resources within these regional aquitards in areas where they outcrop or occur close to surface. Such areas of localised partial aquifer potential may be due in part to enhanced groundwater storage due to weathering and fracturing.

  • This Surat Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Surat Basin is a sedimentary basin with approximately 2500 m of clastic fluvial, estuarine, coastal plain, and shallow marine sedimentary rocks, including sandstone, siltstone, mudstone, and coal. Deposition occurred over six cycles from the Early Jurassic to the Cretaceous, influenced by eustatic sea-level changes. Each cycle lasted 10 to 20 million years, ending around the mid-Cretaceous. Bounded by the Auburn Arch to the northeast and the New England Orogen to the southeast, it connects to the Clarence-Moreton Basin through the Kumbarilla Ridge. The Central Fold Belt forms its southern edge, while Cenozoic uplift caused erosion in the north. The basin's architecture is influenced by pre-existing faults and folds in the underlying Bowen Basin and the nature of the basement rocks from underlying orogenic complexes. Notable features include the north-trending Mimosa Syncline and Boomi Trough, overlying the deeper Taroom Trough of the Bowen Basin and extending southwards. The Surat Basin overlies older Permian to Triassic sedimentary basins like the Bowen and Gunnedah Basins, unconformably resting on various older basement rock terranes, such as the Lachlan Orogen, New England Orogen, and Thomson Orogen. Several Palaeozoic basement highs mark its boundaries, including the Eulo-Nebine Ridge in the west and the Kumbarilla Ridge in the east. Paleogene to Neogene sediments, like those from the Glendower Formation, cover parts of the Surat Basin. Remnant pediments and Cenozoic palaeovalleys incised into the basin have added complexity to its geological history and may influence aquifer connections. Overall, the Surat Basin's geological history is characterized by millions of years of sedimentation, tectonic activity, and erosion, contributing to its geological diversity and economic significance as a source of natural resources, including coal and natural gas.

  • Monitoring is a regulatory requirement for all carbon dioxide capture and geological storage (CCS) projects to verify containment of injected carbon dioxide (CO2) within a licensed geological storage complex. Carbon markets require CO2 storage to be verified. The public wants assurances CCS projects will not cause any harm to themselves, the environment or other natural resources. In the unlikely event that CO2 leaks from a storage complex, and into groundwater, to the surface, atmosphere or ocean, then monitoring methods will be required to locate, assess and quantify the leak, and to inform the community about the risks and impacts on health, safety and the environment. This paper considers strategies to improve the efficiency of monitoring the large surface area overlying onshore storage complexes. We provide a synthesis of findings from monitoring for CO2 leakage at geological storage sites both natural and engineered, and from monitoring controlled releases of CO2 at four shallow release facilities - ZERT (USA), Ginninderra (Australia), Ressacada (Brazil) and CO2 field lab (Norway).

  • This Tasmania Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Late Carboniferous to Late Triassic Tasmania Basin covers approximately 30,000 square kilometres of onshore Tasmania. The basin contains up to 1500 m of mostly flat-lying sedimentary rocks, and these are divided into two distinct lithostratigraphic units, the Lower and the Upper Parmeener Supergroup. The Lower Parmeener Supergroup comprises Late Carboniferous to Permian rocks that mainly formed in marine environments. The most common rock types in this unit are mudstone, siltstone and sandstone, with less common limestone, conglomerate, coal, oil shale and tillite. The Upper Parmeener Supergroup consists predominantly of non-marine rocks, typically formed in fluvial and lacustrine environments. Common rock types include sandstone, siltstone, mudstone and minor basalt layers. Post-deposition the rocks of the Parmeener Supergroup experienced several major geological events, including the widespread intrusion of tholeiitic dolerite magma during the Middle Jurassic.

  • This study explored the full potential of high-resolution multibeam data for an automatic and accurate mapping of complex seabed under a predictive modelling framework. Despite of the extremely complex distributions of various hard substrata at the inner-shelf of the study area, we achieved a nearly perfect prediction of 'hard vs soft' classification with an AUC close to 1.0. The predictions were also satisfactory for four out of five sediment properties, with R2 values range from 0.55 to 0.73. In general, this study demonstrated that both bathymetry and backscatter information (from the multibeam data) should be fully utilised to maximise the accuracy of seabed mapping. From the modelled relationships between sediment properties and multibeam data, we found that coarser sediment generally generates stronger backscatter return and that deeper water with its low energy favours the deposition of mud content. Sorting was also found to be a better sediment composite property than mean grain size. In addition, the results proved one again the advantages of applying proper feature extraction approaches over original backscatter angular response curves.

  • A compilation of thematic summaries of 42 Australian Groundwater Provinces. These consistently compiled 42 summaries comprise the National Hydrogeological Inventory. The layer provides the polygons for each groundwater province in the inventory and thematic information for each province, including location and administration information, demographics, physical geography, surface water, geology, hydrogeology, groundwater, groundwater management and use, environment, land use and industry types and scientific stimulus.

  • This South-east Australian Fractured Rock Province dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. Groundwater in Australia's fractured rock aquifers is stored in fractures, joints, bedding planes, and cavities within the rock mass, comprising about 40% of the country's groundwater. Much of this water can be utilized for irrigation, town water supplies, stock watering, and domestic use, based on state regulations. Fractured systems account for approximately 33% of all bores in Australia but contribute to only 10% of total extraction due to variable groundwater yield. Quantifying groundwater movement in fractured rock systems is challenging, as it depends on the distribution of major fractures. Groundwater flow direction is more influenced by the orientation of fractures than hydraulic head distribution. Recharge in fractured rock aquifers is typically localized and intermediate. In Eastern Australia, New South Wales' Lachlan Orogen, which extends from central and eastern New South Wales to Victoria and Tasmania, is a significant region with diverse lithological units, including deep marine turbidites, shallow marine to sub-areal sediments, extensive granite bodies, and volcano-intrusive complexes. This region contains various mineral deposits, such as orogenic gold, volcanic-hosted massive sulphide, sediment-hosted Cu-Au, porphyry Au-Cu, and granite-related Sn. Note: The study does not include additional Orogens in the east (New England) and west (Thomson and Delamerian). The Delamerian Orogen is present throughout western Tasmania.

  • This Carpentaria Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Carpentaria Basin is a vast intra-cratonic sedimentary basin situated on and offshore in north-eastern Australia, covering around 550,000 square kilometres across Queensland and the Northern Territory. It comprises predominantly sandstone-rich rock units deposited during sea level highs from the Late Jurassic to Mid Cretaceous. The basin overlies a heterogeneous Proterozoic basement and is separated from contemporaneous sedimentary structures by basement highs and inliers. Four main depocentres within the larger Carpentaria Basin form four major sub-basins: the Western Gulf Sub-basin, Staaten Sub-basin, Weipa Sub-basin, and Boomara Sub-basin. While the basin is extensive and continuous in Queensland, it becomes more heterogeneous and discontinuous in the Northern Territory. Remnants of the basin's stratigraphy, referred to as the Dunmarra Basin, are found along the Northern Territory coast and inland. The depositional history commenced during the Jurassic with down warping near Cape York Peninsula, resulting in the Helby beds and Albany Pass beds' concurrent deposition. The basin experienced marine transgressions during the Cretaceous, with the Gilbert River Formation widespread and the Wallumbilla Formation occurring during sea level highs. The Carpentaria Basin's strata are relatively undeformed and unmetamorphosed. The Northern Territory sequence displays slightly different stratigraphy, limited to the height of the Aptian marine transgression above the Georgina Basin. The Walker River Formation and Yirrkala Formation represent key units in this area, outcropping as tablelands and mesas largely unaffected by tectonism.

  • The Protocol on Environmental Protection to the Antarctic Treaty (the 'Madrid Protocol') includes provisions to protect areas of biological, scientific, historic, aesthetic or wilderness value. While these provisions have been mostly utilised to protect sites of biological or cultural significance, sites of geological or geomorphological significance may also be considered. To date, only two sites within East Antarctica (Marine Plain, Vestfold Hills and Mount Harding, Grove Mountains), have been declared as Antarctic Specially Protected Areas (ASPA) in recognition of their unique geological or geomorphological significance. Recently, however, Stornes, a peninsula in the Larsemann Hills (Prydz Bay) has been identified as a candidate due to the abundance and diversity of extremely rare granulite-facies borosilicate and phosphate minerals found there. The need for proactive intervention, protection and management of sites of intrinsic geoscientific value is becoming increasingly important. This recent example highlights the growing awareness of the intrinsic scientific value of Antarctic geological features within the AAT, including rare mineral or fossil localities. This awareness is identified within the current Australian Antarctic Science Strategic Plan and emphasises that geosciences can actively contribute to and influence the development of management plans and actively support Australia's commitments to Annex V of the Madrid Protocol. Wider recognition of the geological values achieved by invoking the provisions for area management, including creating the need to obtain the permission of a national authority to enter the area, should also mitigate casual souveniring and accidental or deliberate damage caused by ill-advised construction or other human activity.