soil
Type of resources
Keywords
Publication year
Scale
Topics
-
Data gathered in the field during the sample collection phase of the National Geochemical Survey of Australia (NGSA) has been used to compile the Preliminary Soil pH map of Australia. The map, which was completed in late 2009, offers a first-order estimate of where acid or alkaline soil conditions are likely to be expected. It provides fundamental datasets that can be used for mineral exploration and resource potential evaluation, environmental monitoring, landuse policy development, and geomedical studies into the health of humans, animals and plants.
-
Iron (Fe) oxide mineralogy in most Australian soils is poorly characterised, even though Fe oxides play an important role in soil function. Fe oxides reflect the conditions of pH, redox potential (Eh), moisture and temperature in the soil environment. The Fe oxide mineralogy exerts a strong control on soil colour. Visible-near infrared (vis-NIR) spectroscopy can be used to identify and measure the abundance of certain Fe oxides in soil as well as soil colour. The aims of this paper are to: (i) measure the hematite and goethite content of Australian soils from their vis-NIR spectra, (ii) compare these results to measurements of soil colour, and (iii) describe the spatial variability of hematite, goethite and soil colour, and map their distribution across Australia. The spectra of 4606 surface soil sample from across Australia were measured using a vis-NIR spectrometer with a wavelength range between 350-2500 nm. We determined the Fe oxide content from characteristic absorptions of hematite (near 880 nm) and goethite (near 920 nm) and derived a normalised iron oxide difference index (NIODI) to better discriminate between them. The NIODI was generalised across Australia with its spatial uncertainty using sequential indicator simulation. We also derived soil RGB colour from the spectra and mapped its distribution and uncertainty across the country using sequential Gaussian simulations. The simulated RGB colour values were made into a composite true colour image and were also converted to Munsell hue, value and chroma. These colour maps were compared to the map of the NIODI and both were used for interpretation of our results. The work presented here was evaluated using existing studies on the distribution of Fe oxides in Australian soils.
-
Soil mapping at the local- (paddock), to continental-scale, may be improved through remote hyperspectral imaging of surface mineralogy. This opportunity is demonstrated for the semiarid Tick Hill test site (20 km2) near Mount Isa in western Queensland. The study of this test site is part of a larger Queensland government initiative involving the public delivery of 25,000 km2 of processed airborne hyperspectral mineral maps at 4.5 m pixel resolution to the mineral exploration industry. Some of the mineral maps derived from hyperspectral imagery for the Tick Hill area include the abundances and/or physicochemistries (chemical composition and crystal disorder) of dioctahedral clays (kaolin, illite-muscovite and Al smectite, both montmorillonite and beidellite), ferric/ferrous minerals (hematite/goethite, Fe2+-bearing silicates/carbonates) and hydrated silica (opal) as well as soil water (bound and unbound) and green and dry (cellulose/lignin) vegetation. Validation of these hyperspectral mineral products is based on field soil sampling and laboratory analyses (spectral reflectance, X-ray diffraction, scanning electron microscope and electron backscatter). The mineral maps show more detailed information regarding the surface composition compared with the published soil and geology (1:100,000 scale) maps and airborne radiometric imagery (collected at 200 m line spacing). This mineral information can be used to improve the published soil mapping but also has the potential to provide quantitative information suitable for soil and water catchment modeling and monitoring.
-
Abstract The ability of thermal infrared (TIR) spectroscopy to characterise mineral and textural content was evaluated for soil samples collected in the semi-arid environment of north-western Queensland, Australia. Grain size analysis and separation of clay, silt and sand sized soil fractions were undertaken to establish the relationship between quartz and clay emissivity signatures and soil texture. Spectral band parameters, based on thermal infrared specular and volume scattering features, were found to discriminate fine clay mineral-rich soil from mostly coarser quartz-rich sandy soil, and to a lesser extent, from the silty quartz-rich soil. This study found that there was the potential for quantifying soil mineral and texture content using TIR spectroscopy. Key Words Soil composition, quartz, kaolinite, smectite, grain size, Tick Hill
-
The present report is a compilation of 531 geochemical maps that result from the National Geochemical Survey of Australia. These constitute the first continental-scale series of geochemical maps based on internally consistent, state-of-the-art data pertaining to the same sampling medium collected, prepared and analysed in a uniform and well documented manner and over a short time period (four years). Interpretations of the data and maps will be published separately. The geochemical maps can be used for better understanding the accumulation, mobility and significance of chemical elements in the near-surface environment of Australia. It is expected that they will provide a new, additional pre-competitive dataset for the energy and mineral resource exploration industry, which should help prioritise areas for further exploration investment and thus reduce risk. Further, it is also likely that some of the geochemical maps will find use in other disciplines related to natural resource management and environmental monitoring.
-
Spectral data from airborne and ground surveys enable mapping of the mineralogy and chemistry of soils in a semi-arid terrain of Northwest Queensland. The study site is a region of low relief, 20 km southeast of Duchess near Mount Isa. The airborne hyperspectral survey identified more than twenty surface components including vegetation, ferric oxide, ferrous iron, MgOH, and white mica. Field samples were analysed by spectrometer and X-ray diffraction to test surface units defined from the airborne data. The derived surface materials map is relevant to soil mapping and mineral exploration, and also provides insights into regolith development, sediment sources, and transport pathways, all key elements of landscape evolution.
-
We describe a model to predict soil-regolith thickness in a 128,000 ha study area in the central Mt Lofty Ranges in South Australia. The term soil-regolith includes the A, B, and C soil horizons to the lower boundary of the highly weathered bedrock zone (R horizon). The thickness of the soil-regolith has a major control on water holding capacity for plant growth and movement of water through the landscape, and as such, it is important in hydropedological modelling and in evaluating land suitability, e.g. for forestry and agriculture. Thickness estimates also have direct application in mineral exploration and seismic risk assessment. Geology and landscape evolution within the area is complex, reflecting the variable nature of bedrock materials, and the partial preservation of deeply weathered profiles as a consequence of weathering processes dating to the Cenozoic, or possibly older. These characteristics, together with strong climatic gradients across the area, make the study area an ideal location to understand the environmental and landscape evolution controls on weathering depth. The area also features weathered landscape analogues to many parts of southern Australia. We use a digital soil mapping piecewise linear decision tree approach to develop the model to predict soil-regolith thickness. This model is based on relationships established between 714 soil-regolith thickness measurements and 28 environmental covariates (e.g. rainfall, slope, gamma-ray spectrometry). The results establish a correlation R2 of 0.64, based on a 75:25% training:test data split. These results are encouraging, and are a significant advance over soil depth mapping by traditional soil-landscape mapping methods.
-
Soils are one of the key factors which limit human settlement in Australia. Few Australian soils are of good quality - most are naturally infertile. This map shows the extent of soil limitations across the country. In order to overcome problems associated with the many classifications in existence, this map classes soils according to limitations of use - in particular chemical and physical limitations. Altogether, four primary groupings are shown and these are further divided into a total of 29 mapping units. A detailed table relates these units to traditionally classified soil profiles and landforms. Product Specifications: Coverage: Australia Currency: 1976-77 Coordinates: Geographical Datum: AGD66 (GDA94 compliant at this scale) Projection: Simple Conic on two standard parallels 18S and 36S Medium: Paper, flat and folded copies
-
A weathering intensity index (WII) over the Australian continent has been developed at 100 m resolution using regression models based on airborne gamma-ray spectrometry imagery and the Shuttle Radar Topography Mission (SRTM) elevation data. Airborne gamma-ray spectrometry measures the concentration of three radioelements - potassium (K), thorium (Th) and uranium (U) at the Earth's surface. The total gamma-ray flux (dose) is also calculated based on the weighted additions of the three radioelements. Regolith accounts for over 85% of the Australian land area and has a major influence in determining the composition of surface materials and in controlling hydrological and geomorphological processes. The weathering intensity prediction is based on the integration of two regression models. The first uses relief over landscapes with low gamma-ray emissions and the second incorporates radioelement distributions and relief. The application of a stepwise forward multiple regression for the second model generated a weathering intensity index equation of: WII = 6.751 + -0.851*K + -1.319* Relief + 2.682 * Th/K + -2.590 * Dose. The WII has been developed for erosional landscapes but also has the potential to inform on deposition processes and materials. The WII correlates well with site based geochemical indices and existing regolith mapping. Interpretation of the WII from regional to local scales and its application in providing more reliable and spatially explicit information on regolith properties is described.
-
A shallow vertical CO2 injection test was conducted over a 21 day period at the Ginninderra Controlled Release Facility in May 2011. The objective of this test was to determine the extent of lateral CO2 dispersion, breakthrough times and permeability of the soil present at the Ginninderra site. The facility is located in Canberra on the CSIRO agricultural Ginninderra Experiment Station. A 2.15m deep, 15cm stainless steel screened, soil gas sampling well was installed at the site and this was used as the CO2 injection well. The CO2 flow rate was 1.6 L/min (STP). CO2 soil effluxes (respiration and seepage) were measured continuously using a LICOR LI-8100A Automated Soil CO2 Flux System equipped with 5 accumulation chambers spaced 1m apart in a radial pattern from the injection well. These measurements were supplemented with CO2 flux spot measurements using a WestSystems portable fluxmeter. Breakthrough at 1m from the injection point occurred within 6 hrs of injection, 32hrs at 2m and after almost 5 days at 3m. The average steady state CO2 efflux was 85 ?mol/m2/s at 1m, 15 ?mol/m2/s at 2m and 5.0 ?mol/m2/s at 3m. The average background CO2 soil respiration efflux was 1.1 - 0.6 ?mol/m2/s. Under windy conditions, higher soil CO2 efflux could be expected due to pressure pumping but this is contrary to the observed results. Prolonged windy periods led to a reduction in the CO2 efflux, up to 30% lower than the typical steady state value.