petroleum exploration
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
Legacy product - no abstract available
-
Legacy product - no abstract available
-
Legacy product - no abstract available
-
Legacy product - no abstract available
-
Surprisingly few natural hydrocarbon seeps have been identified in Australia's offshore basins despite studies spanning thirty years. Initial studies of natural hydrocarbon seepage around the Australian margin were generally based around the geochemical analysis of stranded bitumens, water column geochemical `sniffer' sampling, synthetic aperture radar or airborne laser fluorsensor. Later studies involved the integration of these remote sensing and geochemical techniques with mutli-channel and shallow seismic. A review of these earlier studies indicates that many seepage interpretations need to be re-evaluated and that previous data sets, when set in a global context, often represent normal background hydrocarbon levels. Relatively few sites of proven natural hydrocarbon seepage in Australia's offshore sedimentary basins can be reconciled with the dominantly passive margin setting and low recent sedimentation rates, which are not favourable for high rates of seepage, and difficulties in proving seepage on high energy, shallow carbonate shelves, where seabed features may be rapidly reworked and modern marine signatures are overprinted on authigenic seep carbonates. Active thermogenic methane seepage on the Yampi Shelf, the only proven documented occurrence in Australia, is driven by deposition of a thick Late Tertiary carbonate succession and Late Miocene tectonic reactivation. Therefore, to increase the success of detecting and correctly interpreting natural hydrocarbon seepage, data need to be analysed and integrated within the context of the local geological setting, and with an understanding of what is observed globally.
-
Legacy product - no abstract available
-
Legacy product - no abstract available
-
Legacy product - no abstract available
-
Legacy product - no abstract available
-
Legacy product - no abstract available