From 1 - 10 / 34
  • Tropical Cyclone (TC) Yasi crossed Queensland's Cassowary Coast during the night of the 2nd and 3rd of February, 2011. The cyclone was forecast by BoM (2011) to be a severe storm with wind gusts forecast to exceed the design gust wind speeds for houses set out in AS4055. Following the passage of the cyclone, it was evident that the severe wind and large coastal storm surge had caused significant damage to the region's building stock. Geoscience Australia (GA), together with collaborators from the National Institute of Water and Atmospheric Research, New Zealand (NIWA), Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA) and Maddocks & Associates, undertook a survey of damage to the region's buildings caused by severe wind and storm surge.

  • A community Safety Capbility Flyer was produced to showcase the work undertaken in the Community Safety Value Stream. The flyer includes an introduction to the Community Safety Value Stream, case studies of the work Geoscience Australia does in this space and information on how to engage with Geoscience Australia via the products, tools, models and applications that are produced. This flyer is intended for use a conferences and where promotional material would beneficial to showcase the work undertaken at Geoscience Australia such as the Floodplain Management Association Conference on 19-22 May 2015.

  • The Australian Flood Risk Information Portal (the portal) is an initiative of the Australian Government, established following the devastating floods across Eastern Australia in 2011. The portal is a key component of the National Flood Risk Information Project (NFRIP), and aims to provide a single point of access to Australian flood information. Currently much of Australia's existing flood information is dispersed across disparate sources, making it difficult to find and access. The portal will host data and tools that allow public discovery, visualisation and retrieval of flood studies, flood maps, satellite derived water observations and other related information, all from a single location. The portal will host standards and guidelines for use by jurisdictions and information custodians to encourage best practice in the development of new flood risk information. While the portal will initially host existing flood information, the architecture has been designed to allow the portal content to grow over time to meet the needs of users. The aim is for the portal to display data for a range of scenarios from small to extreme events, though this will be dependent on stakeholder contributions. Geoscience Australia's Australian Flood Studies Database is the portal's data store of flood study information. The database includes metadata created through a purpose-built data entry application, and over time, information harvested from state-operated catalogues. For each entry the portal provides a summary of the flood study, including information on how the study was done, what data was used, what flood maps were produced and for what scenarios, as well as details on the custodian and originating author. If the study included an assessment of damage, details such as estimates of annual average damage, or the number of properties affected during a flood of a particular likelihood will also be included. During the last phase of development downloadable flood study reports and their associated flood maps have been added to the portal where available. As the portal is populated it will increasingly host mapped flood data, or link to flood data and maps held in authoritative databases hosted by State and Territory bodies. Mapping data to be made accessible through the portal will include flood extents and to a lesser degree information on water depths. The portal will also include water observations obtained from Geoscience Australia's historic archive of Landsat imagery. This data will show whether a particular location was 'wet' at some point during the past 30 years. While this imagery does not necessarily represent the peak of a flood or show water depth, the data will support the validation and verification process of hydrologic and hydraulic flood modelling. This work will prove useful particularly in rural areas where there is little or no flood information. The portal also provides flood information custodians with the ability to either upload mapped data directly to the portal or to make this data accessible via web services. Data management tools and standards, developed through NFRIP, will enable data custodians to map their data to agreed standards for delivery through the portal. A portal framework and supporting principles has been developed to guide the maintenance and development of the portal.

  • The datasets created to produce the emergency mapping support products which contributed to fulfilling GA's arrangements in supporting the outcomes sought by the Australian Government during disaster events.

  • Geoscience Australia is currently drafting a new National Earthquake Hazard Map of Australia using modern methods and models. Among other applications, the map is a key component of Australia's earthquake loading code AS1170.4. In this paper we provide a brief history of national earthquake hazard maps in Australia, with a focus on the map used in AS1170.4, and provide an overview of the proposed changes for the new map. The revision takes advantage of the significant improvements in both the data sets and models used for earthquake hazard assessment in Australia since the original maps were produced. These include: - An additional 20+ years of earthquake observations - Improved methods of declustering earthquake catalogues and calculating earthquake recurrence - Ground motion prediction equations (i.e. attenuation equations) based on observed strong motions instead of intensity - Revised earthquake source zones - Improved maximum magnitude earthquake estimates based on palaeoseismology - The use of open source software for undertaking probabilistic seismic hazard assessment which promotes testability and repeatability The following papers in this session will address in more detail the changes to the earthquake catalogue, earthquake recurrence and ground motion prediction equations proposed for use in the draft map. The draft hazard maps themselves are presented in the final paper.

  • This document is intended to provide a record of the participants, program, and discussions held at the Fire Weather and Risk Workshop, held at Peppers Craigieburn in Bowral, from 1st -4th September 2011. The workshop was attended by 77 delegates and was sponsored by the ACT Emergency Services Agency, Geoscience Australia, the Bureau of Meteorology, and the Federal Attorney Generals Department. These proceedings include the: - workshop program - executive summary by the workshop organizers - presentation abstracts (optional) - summaries of presentations and discussions (compiled at the workshop by the session chairs and scribes) - survey of participants- expectations of the workshop (received prior to the workshop) - results of a post-workshop evaluation - list of participants. This document also includes an invited journalistic-styled article by science journalist, Nick Goldie (Senior Deputy Captain, Colinton Rural Fire Brigade, NSW RFS) which provided an independent view on the activities that occurred over the three days.

  • A compilation of short animations, describing the key processes involved in tsunami generation.

  • A short film about a scientific project aimed at enhancing risk analysis capacities for flood, severe wind from tropical cyclones and earthquake in the Greater Metropolitan Manila Area. Manila is one of the world's megacities, and the Greater Metro Manila Area is prone to natural disasters. These events may have devastating consequences for individuals, communities, buildings, infrastructure and economic development. Understanding the risk is essential for implementing Disaster Risk Reduction programs. In partnership with AusAID, Geoscience Australia is providing technical leadership for risk analysis projects in the Asia-Pacific Region. In the Philippines, Geoscience Australia is engaging with Government of the Philippines agencies to deliver the "Enhancing Risk Analysis Capacities for Flood, Tropical Cyclone Severe Wind and Earthquake in the Greater Metro Manila Area" Project.

  • The use of Interferometric Synthetic Aperture Radar (InSAR) to monitor volcano hazards by detecting ground deformation has been demonstrated in numerous cases around the world. This report presents an investigation of the feasibility of using InSAR as a broad scale volcano-monitoring tool in Papua New Guinea (PNG). This type of ongoing broad-scale monitoring would be a significant leap forward compared to the majority of past applications of InSAR for volcano monitoring, which have been sporadic and often conducted in hindsight. A major focus of this study was the development of open-source InSAR analysis software which makes it easier to implement in developing countries where resources may be limited. The environmental conditions of PNG, such as steep topography, dense vegetation and the moist, turbulent atmosphere pose significant challenges to volcano monitoring using InSAR. On the other hand, the remoteness of many of the volcanoes and the limited geophysical resources currently employed to monitor them, makes a broad-scale InSAR monitoring system an attractive proposition. The viability of InSAR as an ongoing tool for broad-scale volcano monitoring in PNG is constrained by the future availability of L-band Synthetic Aperture Radar (SAR) satellite imagery. The ALOS-2 mission should meet the data requirements of a broad-scale volcano monitoring programme. However, the present cost of ALOS data is prohibitive to ongoing monitoring, given the large volume of data required. The planned ALOS-2 mission will acquire SAR data with even higher temporal resolution, but this will be of little use to InSAR monitoring unless it is available at a cost conducive to regular access. At present, the greatest single barrier to a broad-scale InSAR monitoring system is the prohibitive cost of obtaining the required SAR imagery. To improve the accessibility of InSAR processing software to those in developing countries, the InSAR processing workflow that has been developed in this study is open source, being based on the GMTSAR package. In addition the interface has been simplified and a greater level of automation has been implemented to reduce the training required to become operational. The system has been designed to deal with the large volume of data processing required in a broad-scale volcano monitoring operation by parallelizing the most computationally intensive parts of the workflow. A case study of the Rabaul caldera demonstrates that L-band SAR interferometry can overcome many of the challenges of applying InSAR in PNG. However, continued development is required to enable time-series InSAR analysis. This would help to resolve the nonlinear nature of volcano deformation events and reduce the impact of spurious atmospheric delay signals. Commercial software is available to meet this requirement but the development of an open source alternative would be desirable to make the platform inclusive of developing countries.

  • A multi-hazard and exposure analysis of Asia. A GIS study that incorporates regional data for: landslide, tsunami, earthquake, tropical cyclone, volcanic, drought and flood hazard.