greenhouse gas
Type of resources
Keywords
Publication year
Scale
Topics
-
Recent national and state assessments have concluded that sedimentary formations that underlie or are within the Great Artesian Basin (GAB) may be suitable for the storage of greenhouse gases. These same formations contain methane and naturally generated carbon dioxide that has been trapped for millions of years. The Queensland government has released exploration permits for Greenhouse Gas Storage in the Bowen and Surat basins. An important consideration in assessing the potential economic, environmental, health and safety risks of such projects is the potential impact CO2 migrating out of storage reservoirs could have on overlying groundwater resources. The risk and impact of CO2 migrating from a greenhouse gas storage reservoir into groundwater cannot be objectively assessed without knowledge of the natural baseline characteristics of the groundwater within these systems. Due to the phase behaviour of CO2, geological storage of carbon dioxide in the supercritical state requires depths greater than 800m, but there are no hydrochemical studies of such deeper aquifers in the prospective storage areas. Geoscience Australia (GA) and the Geological Survey of Queensland (GSQ), Queensland Department of Mines and Energy, worked collaboratively under the National Geoscience Agreement (NGA) to characterise the regional hydrochemistry of the Denison Trough and Surat Basin and trialled different groundwater monitoring strategies. The output from this Project constitutes part of a regional baseline reference set for future site-specific and semi-regional monitoring and verification programmes conducted by geological storage proponents. The dataset provides a reference of hydrochemistry for future competing resource users.
-
A metadata report for the atmospheric monitoring station installed in Arcturus, south of Emerald in central Queensland. The station was installed for baseline atmospheric monitoring to contribute to emission modelling spanning 2010-2014. The station included compositional gas analysers, supporting meteorological sensors and an eddy covariance flux tower. The metadata covered in the report include: the major variables measured by each instrument, the data duration and frequency, data accuracy, calibration and corrections, the location the data is stored, and the primary contact for the data.
-
Many industries and researchers have been examining ways of substantially reducing greenhouse gas emissions. No single method is likely to be a panacea, however some options do show considerable promise. Geological sequestration is one option that utilises mature technology and has the potential to sequester large volumes of CO2. In Australia geological sequestration has been the subject of research for the last 2? years within the Australian Petroleum Cooperative Research Centre's GEODISC program. A portfolio of potential geological sequestration sites (?sinks?) has been identified across all sedimentary basins in Australia, and these have been compared with nearby known or potential CO2 emission sources. These sources have been identified by incorporating detailed analysis of the national greenhouse gas emission databases with other publicly available data, a process that resulted in recognition of eight regional emission nodes. An earlier generic economic model for geological sequestration in Australia has been updated to accommodate the changes arising from this process of ?source to sink? matching. Preliminary findings have established the relative attractiveness of potential injection sites through a ranking approach. It includes the ability to accommodate the volumes of sequesterable greenhouse gas emissions predicted for the adjacent region, the costs involved in transport, sequestration and ongoing operations, and a variety of technical geological risks. Some nodes with high volumes of emissions and low sequestration costs clearly appear to be suitable, whilst others with technical and economic issues appear to be problematic. This assessment may require further refinement once findings are completed from the GEODISC site-specific research currently underway.
-
There is increasing recognition that minimising methane emissions from the oil and gas sector is a key step in reducing global greenhouse gas emissions in the near term. Atmospheric monitoring techniques are likely to play an important future role in measuring the extent of existing emissions and verifying emission reductions. They can be very suitable for monitoring gas fields as they are continuous and integrate emissions from a number of potential point and diffuse sources that may vary in time. Geoscience Australia and CSIRO Marine & Atmospheric Research have collected three years of continuous methane and carbon dioxide measurements at their atmospheric composition monitoring station ('Arcturus') in the Bowen Basin, Australia. Methane signals in the Bowen Basin are likely to be influenced by cattle production, landfill, coal production, and conventional and coal seam gas (CSG) production. Australian CSG is typically 'dry' and is characterised by a mixed thermogenic-biogenic methane source with an absence of C3-C6+ alkanes. The range of '13C isotopic signatures of the CSG is similar to methane from landfill gas and cattle emissions. The absence of standard in-situ tracers for CSG fugitive emissions suggests that having a comprehensive baseline will be critical for successful measurement of fugitive emissions using atmospheric techniques. In this paper we report on the sensitivity of atmospheric techniques for the detection of fugitive emissions from a simulated new CSG field against a three year baseline signal. Simulation of emissions was performed for a 1-year period using the coupled prognostic meteorological and air pollution model TAPM at different fugitive emission rates (i.e. estimates of <1% to up to 10% of production lost) and distances (i.e. 10 - 50 km) from the station. Emissions from the simulated CSG field are based on well density, production volumes, and field size typical of CSG fields in Australia. The distributions of the perturbed and baseline signals were evaluated and statistically compared to test for the presence of fugitive methane emissions. In addition, a time series model of the methane baseline was developed in order to generate alternative realizations of the baseline signal. These were used to provide measures of both the likelihood of detecting fugitive emissions at various emission levels and of the false alarm rate. Results of the statistical analysis and an indicative minimum fugitive methane emission rate that can be detected using a single monitoring station are presented. Poster presented at the American Geophysical Union meeting, December 2013, San Francisco
-
Hydrothermal and hot fractured rock (HFR) resources are prevalent in Australia. This, and evidence of risks posed by climate change are factors stimulating growth in geothermal energy exploration, proof-of-concept and demonstration power generation projects in Australia. In the six years since the grant of the first Geothermal Exploration Licence (GEL) in Australia in 2001, 16 companies have joined the hunt for renewable and emissions-free geothermal energy resources in 122 licence application areas covering ~ 68,000 km2. The associated work programs correspond to an investment of $570 million, a tally which excludes up-scaling and deployment projects assumed in the Energy Supply Association of Australia's scenario for 6.8% (~ 5.5 GWe) of Australia's base-load power coming from geothermal resources by 2030. Most investment is focused on HFR for enhanced geothermal systems (EGS) to fuel binary power plants. At least two companies are also focused on hydrothermal resources, also to fuel binary power plants. A national EGS resource assessment and a road-map for the commercialisation of Australian EGS are expected to be published in 2008. Geoscience Australia's preliminary work suggests Australia's hot rock energy between 150oC and 5 km is roughly 1.2 billion PJ (roughly 20,000 years of Australia's primary energy use in 2005), without taking account of the renewable characteristics of hot rock EGS plays. The presentation will provide up-to-date accounts of: 1. Exploration, proof-of-concept and demonstration projects on the path to commercializing hot rock resources in Australia; 2. Government designed investment frameworks that aim to attract and facilitate progress to commercializing hot rock resources in Australia; 3. Methods adopted by regulators to meet community expectations that only safe operations (including EGS projects) will be approved by regulators; and 4. Proposed methods for the portfolio management of EGS projects vying for funding within companies, and competing for research and demonstration grants from governments.
-
Hot Rocks in Australia - National Outlook Hill, A.J.1, Goldstein, B.A1 and Budd, A.R.2 goldstein.barry@saugov.sa.gov.au hill.tonyj@saugov.sa.gov.au Petroleum & Geothermal Group, PIRSA Level 6, 101 Grenfell St.Adelaide SA 50001 Anthony.Budd@ga.gov.au Onshore Energy & Minerals Division, Geoscience Australia, GPO Box 378 Canberra ACT 26012 Abstract: Evidence of climate change and knowledge of enormous hot rock resources are factors stimulating growth in geothermal energy research, including exploration, proof-of-concept appraisals, and development of demonstration pilot plant projects in Australia. In the six years since the grant of the first Geothermal Exploration Licence (GEL) in Australia, 16 companies have joined the hunt for renewable and emissions-free geothermal energy resources in 120 licence application areas covering ~ 67,000 km2 in Australia. The associated work programs correspond to an investment of $570 million, and that tally excludes deployment projects assumed in the Energy Supply Association of Australia's scenario for 6.8% (~ 5.5 GWe) of Australia's base-load power coming from geothermal resources by 2030. Australia's geothermal resources fall into two categories: hydrothermal (from relatively hot groundwater) and the hot fractured rock i.e. Enhanced Geothermal Systems (EGS). Large-scale base-load electricity generation in Australia is expected to come predominantly from Enhanced Geothermal systems. Geologic factors that determine the extent of EGS plays can be generalised as: - source rock availability, in the form of radiogenic, high heat-flow basement rocks (mostly granites); - low thermal-conductivity insulating rocks overlying the source rocks, to provide thermal traps; - the presence of permeable fabrics within insulating and basement rocks, that can be enhanced to create heat-exchange reservoirs; and - a practical depth-range, limited by drilling and completion technologies (defining a base) and necessary heat exchange efficiency (defining a top). A national EGS resource assessment and a road-map for the commercialisation of Australia's EGSs are expected to be published in 2008. The poster will provide a synopsis of investment frameworks and geothermal energy projects underway and planned in Australia.
-
Australia has been making major progress towards early deployment of carbon capture and storage from natural gas processing and power generation sources. This paper will review, from the perspective of a government agency, the current state of various Australian initiatives and the advances in technical knowledge up until the 2010 GHGT conference. In November 2008, the Offshore Petroleum and Greenhouse Gas Storage Bill 2006 was passed by the Australian Parliament and established a legal framework to allow interested parties to explore for and evaluate storage potential in offshore sedimentary basins that lie in Australian Commonwealth waters. As a result of this Act, Australia became the first country in the world, in March 2009, to open exploration acreage for storage of greenhouse gases under a system that closely mirrors the well-established Offshore Petroleum Acreage Release. The ten offshore areas offered for geological storage assessment are significantly larger than their offshore petroleum counterparts to account for, and fully contain, the expected migration pathways of the injected GHG substances. The co-incidence of the 2009 Global Financial Crisis may have reduced the number of prospective CCS projects that were reported to be in the 'pipe-line' and the paper examines the implications of this apparent outcome. The Carbon Storage Taskforce has brought together both Australian governments technical experts to build a detailed assessment of the perceived storage potential of Australia's sedimentary basins. This evaluation has been based on existing data, both on and offshore. A pre-competitive exploration programme has also been compiled to address the identified data gaps and to acquire, with state funding, critical geological data which will be made freely available to encourage industrial participation in the search for commercial storage sites.
-
The decision at the 2011 United Nations climate change meeting in Durban to accept CCS as a CDM project activity was truly historic and long overdue. The United Nations Clean Development Mechanism (CDM) allows emission reduction projects in developing countries to earn certified emission reduction (CER) credits, each equivalent to one tonne of CO2. CERs can be traded and sold, and used by developed countries to meet part of their emission reduction targets under the Kyoto Protocol. The intention of the mechanism is to stimulate sustainable development and emission reductions, while providing developed countries with some flexibility in how they achieve their emission reduction targets. The CDM allows developed countries to invest in emission reductions at lowest cost. Since its inception, the CDM has been identified as a means to reduce the cost of CCS projects and so initiate more projects. After five years of negotiations to get CCS accepted as a CDM project activity, the Cancun Decision (2010) put in place a work program to address issues of general concern before CCS could be included in the CDM. The 2010 work program consisted of submissions, a synthesis report, a technical workshop, and concluded with the UNFCCC Secretariat producing draft 'modalities and procedures' describing comprehensive requirements for CCS projects within the CDM. This twenty page 'rulebook' provided the basis for negotiations in Durban. The challenging negotiations, lasting over 32 hours, concluded on 9th December, 2012, with Parties agreeing to the text specifying the modalities and procedures for CCS as CDM project activities. The provisions of the Durban Decision (2011) cover a range of technical issues including site selection and characterisation, risk and safety assessment, monitoring, liabilities, verification and certification, environmental and social impact assessments, responsibilities for non-permanence, and timing of the CDM-project end. etc
-
No abstract available
-
Deployment of Unmanned Aerial Vehicle during surface CO2 release experiments at the Ginninderra greenhouse gas controlled release facility H. Berko (CO2CRC, Geoscience Australia), F. Poppa (The Australian National University), U. Zimmer (The Australian National University) and A. Feitz (CO2CRC, Geoscience Australia) Lagrangian stochastic (LS) forward modelling of CO2 plumes from above-surface release experiments conducted at the GA-CO2CRC Ginninderra controlled release facility demonstrated that small surface leaks are likely to disperse rapidly and unlikely to be detected at heights greater 4 m; this was verified using a rotorcraft to map out the plume. The CO2 sensing rotorcraft unmanned aerial vehicle (RUAV) developed at the Australian National University, Canberra, is equipped with a CO2 sensor, a GPS, lidar and a communication module. It was developed to detect and locate CO2 gas leaks; and estimate CO2 concentration at the emission source. The choice of a rotor-craft UAV allows slower flight speeds compared to speeds of a fixed-wing UAV; and the electric powered motor enables flight times of 12 min. In experiments conducted at the Ginninderra controlled release facility, gaseous CO2 (100 kg per day) was released from a small diffuse source located in the middle of the paddock, and the RUAV was flown repeatedly over the CO2 source at a few meters height. Meteorological parameters measured continuously at the site at the time of the flight were input in the LS model. Mapped out horizontal and vertical CO2 concentrations established the need to be close to the ground in order to detect CO2 leakage using aerial techniques. Using the rotorcraft as a mobile sensor could be an expedient mechanism to detect plumes over large areas, and would be important for early detection of CO2 leaks arising from CCS activities.