From 1 - 10 / 31
  • Using the wind multiplier code (https://pid.geoscience.gov.au/dataset/ga/82481) and an appropriate source of classified terrain data, wind multipliers for all of Queensland at (approximately) 25 metre resolution were created. The wind multipliers have been used to guide impact assessments as part of the Severe Wind Hazard Assessment for Queensland.

  • Severe TC Vance was one of the most intense cyclones to impact mainland Australia. The observed damage to buildings could be explained in terms of structural performance of those buildings. Combining the structural vulnerability of housing with an estimate of the maximum wind gusts, we can explore the possible impacts that a repeat of Vance would cause in Exmouth, and compare the outcomes with what occurred in 1999. The analysis of the impacts of TC Vance on present-day Exmouth shows that very few houses would be completely destroyed. Not surprisingly, older houses (pre-1980’s construction era, excluding the US Navy block houses) would dominate those destroyed, and most likely the timber-framed style houses, many of which were substantially damaged in TC Vance. Published in the Australian Journal of Emergency Management July 2019 edition

  • To provide the solar power industry with a data resource to allow them to assess the economic potential of a site for a solar power plant. Specifically under the Solar Flagship program.

  • Wind multipliers are factors that transform regional wind speeds to local wind speeds considering local effects of land cover and topographic influences. It includes terrain, shielding, topographic and direction multipliers. Except for the direction multiplier whose value can be defined specifically by the Australian wind loading standard AS/NZS 1170.2, terrain, shielding and topographic multipliers are calculated using this software package based on the adaptations of formulae outlined in the AS/NZS 1170.2. This package is an upgraded version of wind multiplier computation software (<a href="https://pid.geoscience.gov.au/dataset/ga/82481">eCat 82481</a>) used to produce wind terrain, shielding and topographic multipliers for national coverage using an input of Land Cover Classification Scheme (LCCS) level 4 version 1.0.0 ( 2015) and 1-second SRTM level 2 derived digital elevation models (DEM-S) version 1.0. In order to improve the classification resolution in the built environment, the LCCS layer is overlaid with both mesh block and settlement types. The output is based on tiles with dimensions about 1 by 1 decimal degree in netCDF format. It includes terrain, shielding and topographic multiplier respectively. Each multiplier further contains 8 directions. The upgraded package is stored in Geoscience Australia public-facing repository and can be accessed via https://github.com/GeoscienceAustralia/Wind_Multipliers

  • The Australian Solar Energy Information System V2.0 has been developed as a collaborative project between Geoscience Australia and the Bureau of Meteorology. The product provides pre-competitive spatial information for investigations into suitable locations for solar energy infrastructure. The outcome of this project will be the production of new and improved solar resource data, to be used by solar researchers and the Australian solar power industry. it is aimed to facilitate broad analysis of both physical and socio-economic data parameters which will assist the solar industry to identify regions best suited for development of solar energy generation. It also has increased the quality and availability of national coverage solar exposure data, through the improved calibration and validation of satellite based solar exposure gridded data. The project is funded by the Australian Renewable Energy Agency. The ASEIS V2.0 has a solar database of resource mapping data which records and/or map the following Solar Exposure over a large temporal range, energy networks, infrastructure, water sources and other relevant data. ASEIS V2.0 has additional solar exposure data provided by the Bureau of Meteorology. - Australian Daily Gridded Solar Exposure Data now ranges from 1990 to 2012 - Australian Monthly Solar Exposure Gridded Data now ranges from 1990 to 2011 ASEIS V2.0 also has a new electricity transmission reference dataset which allows for information to be assessed on any chosen region the distance and bearing angle to the closest transmission powerline.

  • Global solar exposure is the total amount of solar energy falling on a horizontal surface. The daily global solar exposure is the total solar energy for a day. Typical values for daily global exposure range from 1 to 35 MJ/m2 (megajoules per square metre). For mid-latitudes, the values are usually highest in clear sun conditions during the summer, and lowest during winter or very cloudy days. The monthly means are derived from the daily global solar exposure. See metadata statement for more information.

  • Using the new release of the local wind multipliers software (V.3.1) (<a href="https://pid.geoscience.gov.au/dataset/ga/145699">eCat 145699</a>) and an appropriate source of classified terrain data, local wind multipliers on a national scale for the whole continent of Australia at (approximately) 25-metre resolution were calculated. This product is a necessary component for calculating local wind speeds from scenarios and guiding impact assessment of severe wind hazards for both federal and state-wide Emergency Services in Australia.

  • Consider you are responsible for providing an emergency response in Karratha. There is a category 4 cyclone sweeping towards the coast and Bureau of Meteorology forecasts indicate the cyclone will intensify to category 5 before landfall. The last time a category 5 cyclone came close to Karratha was in 1999, when Cyclone John passed 80 km east of Karratha, sparing it the worst winds. If it had not turned to the southeast prior to landfall, damage to Karratha would have been much worse. Karratha has also grown substantially since then, with close to half the residential buildings constructed after 1997. As a first responder, are you prepared for the consequences of a direct strike? Do you even know what the extent of the impacts might be? What will Karratha look like immediately after the cyclone passes? If emergency preparation decisions were based on past experience, they would likely fall well short of the required action to minimise impacts. The Severe Wind Hazard Assessment project, funded through the WA Natural Disaster Resilience Program, endeavours to provide emergency managers with realistic, modelled scenarios of cyclone impact in WA communities to inform local, regional and state planning for cyclone risk. By analysing hypothetical scenarios, the Department of Fire and Emergency Services can identify and address gaps in the understanding of the impacts of a cyclone, and improve decision-making processes at coordination and control levels. A first step in this process is to develop hypothetical severe tropical cyclone footprints for WA communities. We use a stochastic tropical cyclone model to generate a catalogue of cyclone events, then select TC tracks meeting the criteria for the exercise: events with specific intensities passing directly over communities. Here we present the hazard footprints of these hypothetical storms, and a preliminary analysis of the impacts on residential buildings. Poster presented at the 2018 Amos-ICSHMO Conference Sydney, NSW (https://www.ametsoc.org/index.cfm/ams/meetings-events/ams-meetings/amos-icshmo-2018/)