From 1 - 10 / 36
  • As part of the Exploring for the Future (EFTF) program, a chemostratigraphic framework for the Officer Basin was developed that correlates inorganic geochemical sequences between exploration wells. The Officer Basin spans 525,000 km<sup>2</sup> across Western Australia and South Australia, where it remains an unproven frontier basin which has seen little exploration. The objective of this study was to undertake a bulk rock elemental chemostratigraphy study on ten historic wells in order to better correlate the Neoproterozoic and Cambrian sections. Ten study wells, five from Western Australia and five from South Australia, were selected, and core (241) and cuttings (1,245) samples were acquired from their respective state core libraries. All samples were analysed using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), resulting in quantitative data for 50 elements. The approximate proportions of dolomite, clastics, halite and anhydrite for the samples were derived using stoichiometric geochemical calculations. Halite was identified in some formations based on mud log and wireline data, but was not always preserved in the cuttings samples. This non-detection of halite resulted in poor matches between the wireline gamma ray (GR) and ChemGR profiles for halite-bearing units in some wells (e.g. Dragoon-1, Mulyawara-1, and Yowalga-3). Key element and ratios utilised to subdivide the strata were principally chosen to highlight changes in sediment provenance, climatic, and organic matter changes, as they typically have the best correlation potential over a greater distance. The stratigraphy within the study wells has been subdivided into eight chemostratigraphic mega-sequences referred to as MS1 to MS8, which are further subdivided into a total of twenty-four sequences. Mega-Sequences MS1 to MS4 broadly correspond to the published Neoproterozoic–Cambrian Centralian Supersequences (CS1 to CS4). While overall there is broad agreement between these two schemes, there are also sections where the stratigraphy has been reassigned. For example, within Kutjara-1, the section previously assigned to Centralian Supersequence CS2, and equivalent to the Cryogenian Tapley Hill Formation, is assigned to Mega-Sequence MS3 (not MS2). Within MS4, the lithostratigraphically defined members of the Observatory Hill Formation show some significant variation to the chemostratigraphy, with differences occurring within sequences MS4-S3, MS4-S4 and MS4-S5 (e.g. Birksgate-1; Trainor Echo-1). Mega-Sequence MS6 encompasses the Mount Chandler Sandstone in Trainor Echo-1 in the east and the lithological lateral equivalent Lennis Sandstone in Lungkarta-1/ST1 and Yowalga-1 in the west; however, these two argillaceous sandstones are chemically distinct. Carbonate-containing samples from three wells (Birksgate-1, Yowalga-3, and Giles-1) were analysed for their δ13Ccarb and δ18Ocarb isotope signature using Isotope-Ratio Mass Spectrometry (IRMS), with results from the least altered carbonates being of sufficient quality to attempt preliminary age dating. Comparison of the Officer Basin isotope data to global type sections enabled tentative correlation of the Yowalga-3 carbonates to the Tonian and late Ediacaran, and the Birksgate-1 carbonates to the early Cambrian. The geochemistry analyses from 10 basin-wide wells provide a robust dataset that has been used to confirm which sections correlate within the existing lithostratigraphic and sequence stratigraphic framework. This study also highlights where further work needs to be undertaken to elucidate the spatial and temporal relationships of some Cryogenian and early Cambrian sections across the entire basin, given that rocks of these ages contain both potential source and reservoir rocks for petroleum generation and accumulation.

  • <b>IMPORTANT NOTICE:</b> This web service has been deprecated. The Australian Onshore and Offshore Boreholes OGC service at https://services.ga.gov.au/gis/boreholes/ows should now be used for accessing Geoscience Australia borehole data. This is an Open Geospatial Consortium (OGC) web service providing access to a subset of Australian geoscience samples data held by Geoscience Australia. The subset currently relates specifically to Australian Boreholes.

  • Paleoproterozoic arc and backarc assemblages accreted to the south Laurentian margin between 1800 Ma and 1600 Ma, and previously thought to be indigenous to North America, more likely represent fragments of a dismembered marginal sea developed outboard of the formerly opposing Australian-Antarctic plate. Fugitive elements of this arc-backarc system in North America share a common geological record with their left-behind Australia-Antarctic counterparts, including discrete peaks in tectonic and/or magmatic activity at 1780 Ma, 1760 Ma, 1740 Ma, 1710-1705 Ma, 1690-1670 Ma, 1650 Ma and 1620 Ma. Subduction rollback, ocean basin closure and the arrival of Laurentia at the Australian-Antarctic convergent margin first led to arc-continent collision at 1650-1640 Ma and then continent-continent collision by 1620 Ma as the last vestiges of the backarc basin collapsed. Collision induced obduction and transfer of the arc and more outboard parts of the Australian-Antarctic backarc basin onto the Laurentian margin where they remained following later breakup of the Neoproterozoic Rodinia supercontinent. North American felsic rocks generally yield Nd depleted mantle model ages consistent with arc and backarc assemblages built on early Paleoproterozoic Australian crust as opposed to older Archean basement making up the now underlying Wyoming and Superior cratons. Appeared in Lithosphere (2019) 11 (4): 551–559, June 10, 2019.

  • Manuscript detailing the results of chlorite dissolution experiments conducted at Geoscience Australia.

  • <div>Geochemistry of soils, stream sediments, and overbank sediments, plays an important part in informing geochemical environmental baselines, mineral prospectivity, and environmental management practices. Australia has a large number of such surveys, but they are spatially isolated and often used in isolation. First released in 2020, the Levelled Geochemical Baseline of Australia focused on levelling such surveys across the North Australian Craton, so that they could be used as a seamless dataset. This data release acts as an update to the Levelled Geochemical Baseline of Australia by changing the focus to national scale and incorporating recently reanalysed legacy samples.</div><div><br></div><div>This work was undertaken as part of the Exploring for the Future program, an eight-year program by the Australian government. The Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, was an eight year, $225m investment by the Australian Government.</div><div><br></div><div><br></div><div><br></div><div><br></div>

  • The Paleo- to Mesoproterozoic McArthur Basin and Mount Isa region of northern Australia (Figure 1) is richly-endowed with a range of deposit types (e.g., Ahmad et al., 2013; Geological Survey of Queensland, 2011). These include the basin-hosted base metal (Zn-Pb-Ag) deposits of the North Australian Zinc Belt, the richest zinc province in the world (Geological Survey of Queensland, 2011; Huston et al., 2006), as well as Cu (e.g., Mt Isa Copper) and IOCG (e.g., Ernest Henry) deposits (Geological Survey of Queensland, 2011). The giant size of the base metal deposits makes them attractive exploration targets and significant effort has been undertaken in understanding their genesis and setting and developing methodologies and data sets to aid in further discovery. As part of its Exploring for the Future program, Geoscience Australia is acquiring new, and reprocessing old, data sets to provide industry with new exploration tools for these basin-hosted Zn-Pb and Cu deposits, as well as iron-oxide copper-gold deposits. We have adopted a mineral systems approach (e.g., Huston et al., 2016) focussing on regional aspects such as source rocks, locations of mineral deposits, mineralisation haloes and footprints. Increased understanding of these aspects requires knowledge of the background variability of unaltered rocks within the basin. To assist in this we have undertaken a campaign of baseline geochemical studies, with over 800 new samples collected from sedimentary and igneous units of selected parts of the greater McArthur Basin–Mount Isa region. This has allowed us to document temporal and regional background geochemical (and mineralogical) variation within, and between sedimentary and igneous units. The main focus of this work was directed towards aspects of base metal mineralisation; a concurrent GA study (e.g., Jarrett et al., 2019) looking at aspects of hydrocarbon potential was undertaken in parallel. Appeared in Annual Geoscience Exploration Seminar (AGES) Proceedings, Alice Springs, Northern Territory 24-25 March 2020, p. 105

  • Geoscience Australia and its predecessors have analysed hydrochemistry of water sampled from boreholes (both pore water and groundwater), surface features, and rainwater. Sampling was undertaken during drilling or monitoring projects, and this dataset represents a significant subset of stored analyses. Water chemistry including isotopic data is essential to better understand groundwater origins, ages and dynamics, processes such as recharge and inter-aquifer connectivity and for informing conceptual and numerical groundwater models. This GA dataset underpins a nationally consistent data delivery tool and web-based mapping to visualise, analyse and download groundwater chemistry and environmental isotope data. This dataset is a spatially-enabled groundwater hydrochemistry database based on hydrochemistry data from projects completed in Geoscience Australia. The database includes information on physical-chemical parameters (EC, pH, redox potential, dissolved oxygen), major and minor ions, trace elements, nutrients, pesticides, isotopes and organic chemicals. Basic calculations for piper plots colours are derived from Peeters, 2013 - A Background Color Scheme for Piper Plots to Spatially Visualize Hydrochemical Patterns - Groundwater, Volume 52(1) <https://doi.org/10.1111/gwat.12118>. Upon loading the data to the database, all hydrochemistry data are assessed for reliability using Quality Assurance/Quality Control procedures and all datasets were standardised. This data is made accessible with open geospatial consortium (OGC) web services and is discoverable via the Geoscience Australia Portal (<a href="https://portal.ga.gov.au/">https://portal.ga.gov.au/</a>). This dataset is published with the permission of the CEO, Geoscience Australia.

  • A comprehensive compilation of rock, regolith and groundwater geochemistry across the Curnamona Province and overlying basins. This product is part of the Curnamona Geochemistry module of GA's Exploring for the Future program, which is seeking to understand geochemical baselines within the Curnamona Province to support mineral exploration under cover. Data is sourced from GA, CSIRO and state databases, and run through a quality control process to address common database issues (such as unit errors). The data has been separated by sample type and migrated into a standard data structure to make the data internally consistent. A central source for cleaned geochemical data in the same data format is a valuable resource for further research and exploration in the region.

  • This report presents the results of chemostratigraphic analyses for samples of the Waukarlycarly 1 deep stratigraphic well drilled in in the Waukarlycarly Embayment of the Canning Basin. The drilling of the well was funded by Geoscience Australia’s Exploring for the Future initiative to improve the understanding of the sub-surface geology of this underexplored region of the southern Canning Basin. The well was drilled in partnership with Geological Survey of Western Australia (GSWA) as project operator. Waukarlycarly 1 reached a total depth (TD) of 2680.53 m at the end of November 2019 and was continuously cored from 580 mRT to TD. The work presented in this report constitutes part of the post-well data acquisition. An elemental and isotope chemostratigraphic study was carried out on 100 samples of the well to enable stratigraphic correlations to be made across the Canning Basin within the Ordovician section known to host source rocks. Nine chemostratigraphically distinct sedimentary packages are identified in the Waukarlycarly 1 well and five major chemical boundaries that may relate to unconformities, hiatal surfaces or sediment provenance changes are identified. The Ordovician sections in Waukarlycarly 1 have different chemical signals in comparison to those in other regional wells, suggestive of a different provenance for the origin of the sediments in the Waukarlycarly Embayment compared to the Kidson Sub-basin (Nicolay 1) and Broome Platform (Olympic 1).

  • The National Geochemical Survey of Australia (NGSA) is Australia’s only internally consistent, continental-scale geochemical atlas and dataset (<a href="http://dx.doi.org/10.11636/Record.2011.020">http://dx.doi.org/10.11636/Record.2011.020</a>). The present dataset provides additional geochemical data for Li, Be, Cs, and Rb acquired as part of the Australian Government-funded Exploring for the Future (EFTF) program and in support of the Australian Government’s 2023-2030 Critical Minerals Strategy. The dataset fills a knowledge gap about Li distribution in Australia over areas dominated by transported regolith. The main ‘total’ element analysis method deployed for NGSA was based on making a fused bead using lithium-borate flux for XRF then ICP-MS analysis. Consequently, the samples could not be meaningfully analysed for Li. All 1315 NGSA milled coarse-fraction (<2 mm) top (“TOS”) catchment outlet sediment samples, taken from 0 to 10 cm depth in floodplain landforms, were analysed in the current project following the digestion method that provides near-total concentrations of Li, Be, Cs, and Rb. The samples were analysed by the commercial laboratory analysis service provider Bureau Veritas in Perth using low-level mixed acid (a mixture of nitric, perchloric and hydrofluoric acids) digestion with elements determined by ICP-MS (Bureau Veritas methods MA110 and MA112). The data are reported in the same format as the NGSA dataset, allowing for seamless integration with previously released NGSA data. Further details on the QA/QC procedures as well as data interpretation will be reported elsewhere. This data release also includes four continental-scale geochemical maps for Li, Be, Cs, and Rb built from these analytical data. This dataset, in conjunction with previous data published by NGSA, will be of use to mineral exploration and prospectivity modelling around Australia by providing geochemical baselines for Li, Be, Cs, and Rb, as well as identifying regions of anomalism. Additionally, these data also have relevance to other applications in earth and environmental sciences.