From 1 - 10 / 182
  • Categories  

    This GSV Greens Creek Vic pot tho ura totg 4band radiometric grid geodetic is an airborne-derived radiometric Potassium, Thorium and Uranium data over a sun shaded total count radiometric data for the Greens Creek, Vic, 1988 (GSV1670). The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of uranium (K), uranium (U) and uranium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSV Greens Creek Vic pot tho ura totg 4band radiometric grid geodetic has a cell size of 0.0005 degrees (approximately 50m). The data used to produce this grid was acquired in 1988 by the VIC Government, and consisted of 2001 line-kilometres of data at 250m line spacing and 80m terrain clearance. The grid was produced by applying the colours red to the Potassium ground concentration, green to the Thorium concentration and blue to the Uranium concentration. The colours were clipped to a 99% linear scale. These colours were transparent over a shaded Total Count. This clipping will necessarily introduce some artefacts into the ratio grids in areas of very low radioelement concentrations. The 3-band image was superposed on the sun shaded TC grid of the same survey to produce the final image.

  • Categories  

    This GSV Murray Basin Horsham Vic pot tho ura totg 4band radiometric grid geodetic is an airborne-derived radiometric Potassium, Thorium and Uranium data over a sun shaded total count radiometric data for the Murray Basin - Horsham, Vic, 1980 (GSV0193). The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of uranium (K), uranium (U) and uranium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSV Murray Basin Horsham Vic pot tho ura totg 4band radiometric grid geodetic has a cell size of 0.0005 degrees (approximately 50m). The data used to produce this grid was acquired in 1980 by the VIC Government, and consisted of 71729 line-kilometres of data at 250m line spacing and 80m terrain clearance. The grid was produced by applying the colours red to the Potassium ground concentration, green to the Thorium concentration and blue to the Uranium concentration. The colours were clipped to a 99% linear scale. These colours were transparent over a shaded Total Count. This clipping will necessarily introduce some artefacts into the ratio grids in areas of very low radioelement concentrations. The 3-band image was superposed on the sun shaded TC grid of the same survey to produce the final image.

  • This user guide describes the important instructions for using the Tasmanian Extreme Wind Hazard Standalone Tool (TEWHST). It aims to assist the Tasmanian State Emergency Service (SES) to view the spatial nature of extreme wind hazard (and how it varies depending on the direction of the extreme wind gusts). This information indicates detailed spatial texture for extreme hazard, which can provide guidance for understanding where the local-scale hazard (and impact) is expected to be the greatest for any particular event depending on the intensity and directional influence of the broad-scale severe storm. The tool provides spatial information at the local scale (25 metre resolution) of the return period extreme wind hazard (3-second gust at 10 metre height; variation with direction) where the broad-scale regional hazard is provided by the Australian and New Zealand Wind Loading Standard (AS/NZS 1170.2, 2002).

  • This report, 'Pacific Climate Change Science Program: Evaluation of severe wind hazard from tropical cyclones', will be delivered to CSIRO to form a subsection of the 'Climate Change in the Pacific' report. The latter will be launched in November 2011 and will constitute one of the main deliverables for the Pacific Climate Change Science Program (PCCSP). The PCCSP is part of the Australian Government's commitment through the International Climate Change Adaptation Initiative (ICCAI) to meet high priority climate change adaptation needs in vulnerable countries in the Asia-Pacific region. This report provides an evaluation of cyclonic wind hazard for the fifteen PCCSP partner countries located in the western Pacific with the one exception of East Timor. The wind hazard is estimated for both the current climate and for the future climate under an A2 emissions scenario. The current climate wind hazard is estimated by applying GA's Tropical Cyclone Risk Model (TCRM) to the historical track record. TCRM is a statistical-parametric model of tropical cyclone behaviour, enabling users to generate synthetic records of tropical cyclones representing many thousands of years of activity. TCRM is then applied to tracks of tropical cyclone-like vortices (TCLVs) detected in downscaled global climate models to determine how the cyclonic wind hazard may change in the future. The results indicated that the wind loading design standard in this region may significantly underestimate the wind hazard for the current climate. For the future climate projections, the analysis suggests that the wind hazard may decrease for countries close to the equator and near the Australian coastline but could increase for countries greater than 20 degrees poleward from the equator.

  • A review commissioned by the Council of Australian Governments (COAG) in June 2001 entitled 'Natural Disasters in Australia: reforming mitigation, relief and recovery arrangements' concluded that a new approach to natural disasters in Australia was needed. While disaster response and reaction plans remain important, there is now a greater focus towards anticipation of mitigation against natural hazards, involving a fundamental shift in focus beyond relief and recovery towards cost-effective, evidence-based disaster mitigation. This new approach now includes an assessment of the changes in frequency and intensity of natural hazard events that are influenced by climate change, and aims to achieve safer, more sustainable Australian communities in addition to a reduction in risk, damage and losses from future natural disasters. Geoscience Australia (GA) is developing risk models and innovative approaches to assess the potential losses to Australian communities from a range of sudden impact natural hazards. GA aims to define the economic and social threat posed by a range of rapid onset hazards through a combined study of natural hazard research methods and risk assessment models. These hazards include earthquakes, cyclones, floods, landslides, severe winds and storm surge/tsunami. This presentation provides an overview of the risk that peak wind gusts pose to a number of Australian communities (major capital cities), and for some cities examines how climate change may affect the risk (utilising modelling underpinned by a small subset of the IPCC greenhouse gas emission scenarios).

  • This study has examined the observed record of peak gust wind speed (daily maximum 3-second averaged gust wind speed) in order to establish the existence of bias between the early part of the record (measurements obtained using pressure-tube Dines anemometers) and the later part of the record (measurements obtained using cup anemometers). All observational data as well as metadata was obtained from the Bureau of Meteorology. The 38 recording stations considered were in the most part staffed by Bureau of Meteorology officers. To isolate the issue of anemometer replacement, only observing stations located at airports (i.e. those with consistent exposure) and with more than 30 years of record were considered. The visual inspection of the observed daily peak gust wind speed time-series for most of the Bureau of Meteorology observing sites considered in this study is sufficient to indicate that in general the early part of the observing record contains a higher frequency of extreme events, and also the largest amplitude extreme events. Statistical analysis of the daily maximum gust wind speed observations was conducted by employing extreme value distributions (EVD) to examine the difference between two datasets: (1) time-series of Dines & cup anemometer observations (no overlap for each station) (2) coincident Dines & cup anemometer observations

  • The Australian National Coastal Vulnerability Assessment (NCVA) has been commissioned by the Federal Government (Department of Climate Change) to assess the risk to coastal communities from climate related hazards including sea-level rise, storm surge and severe wind from tropical cyclones. In addition to an understanding of the impact/risk posed by the current climate, we have also examined the change in risk under a range of future climate scenarios considering a number of periods up to the end of the 21st century. In collaboration with state and local governments and private industry, this assessment will provide information for application to policy decisions for, inter alia, land use, building codes, emergency management and insurance applications. The understanding of coastal vulnerability and risk is derived from a number of factors, including: the frequency and intensity of the hazard(s); community exposure and the relationship with stressors; vulnerability related to socio-economic factors; impacts that result from the interaction of those components; and capacity of communities, particularly vulnerable communities and groups, to plan, prepare, respond and recover from these impacts. These factors and resulting impacts from hazard events are often complex and often poorly known, but such complexity and uncertainty is not an excuse for inaction. Given these limitations, the NCVA has been undertaken using the best information available to understand the risk to coastal areas on a national scale, and to prioritise areas that will require more detailed assessment.

  • Categories  

    This GSQ Charters Towers Clermont potassium grid geodetic is an airborne-derived radiometric potassium window countrate grid for the Charters Towers-Clermont merge, 1987-1989 survey. The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSQ Charters Towers Clermont potassium grid geodetic radiometric potassium window countrate grid has a cell size of 0.00083 degrees (approximately 89m). The data are in units of counts per second (cps). The data used to produce this grid was acquired in 1987 by the QLD Government, and consisted of 40255 line-kilometres of data at 400m line spacing and 60m terrain clearance.

  • Categories  

    This GSQ Charters Towers Clermont thorium grid geodetic is an airborne-derived radiometric thorium window countrate grid for the Charters Towers-Clermont merge, 1987-1989 survey. The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of thorium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSQ Charters Towers Clermont thorium grid geodetic has a cell size of 0.00083 degrees (approximately 89m). The data are in units of counts per second (or cps). The data used to produce this grid was acquired in 1987 by the QLD Government, and consisted of 40255 line-kilometres of data at 400m line spacing and 60m terrain clearance.

  • Categories  

    This GSQ Charters Towers Clermont total count grid geodetic is an airborne-derived radiometric total count window countrate grid for the Charters Towers-Clermont merge, 1987-1989 survey. The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of total count (K), total count (U) and total count (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSQ Charters Towers Clermont total count grid geodetic has a cell size of 0.00083 degrees (approximately 89m). The data are in units of counts per second (cps). The data used to produce this grid was acquired in 1987 by the QLD Government, and consisted of 40255 line-kilometres of data at 400m line spacing and 60m terrain clearance.