sedimentary basins
Type of resources
Keywords
Publication year
Scale
Topics
-
During 2009-10 Geoscience Australia completed a petroleum prospectivity study in the offshore northern Perth Basin, 200 km northwest of Perth. In some parts of this basin acoustic basement is deep and not resolved in the reflection seismic data. Improvements to the magnetic ship-track database and magnetic anomaly grid produced during the study allowed for assessment of depth to magnetic sources, and estimation of sediment thickness, and provided new insight into basement trends. 2.5D models along several transects, and analysis using spectral methods indicate penetration of the lower sediments by high-susceptibility bodies is necessary to approximate the observed magnetic anomaly. The reflection seismic evidence for these bodies is not obvious, though in some cases they may be associated with interpreted faults. Where the modelled bodies penetrate the sediments, they are mostly below or within the Permian section, except in the west of the study area where sediments thin over oceanic crust. On the northern-most profiles a large positive magnetic anomaly (the Batavia Ridge) is modelled by massive bodies whose tops are 5-10 km below sea floor. On these and other profiles to the south other dyke-like bodies rarely penetrate to shallower than 5 km below the sea floor.
-
Legacy product - no abstract available
-
Legacy product - no abstract available
-
Legacy product - no abstract available
-
Deep seismic reflection profiles collected offshore during a circum-navigation of Tasmania have provided fundamental information on the crustal architecture of the State. In particular, the profiles show the geometry of the boundaries between the major crustal elements, including the offshore continuation of the Arthur Lineament. These crustal element boundaries have apparent dips to the east or southeast and most of them appear to cut through the entire crust to the Moho. In eastern Tasmania, the seismic lines show an old mid-crustal extensional event followed by crustal shortening and duplexing, which probably occurred during the Cambrian-Ordovician Delamerian Orogeny. Thrusts that developed at this time were later reactivated as extensional faults during continental breakup of Pangea in the Cretaceous. Granites off the west coast have the geometry of flat, thin pancakes. In summary, the offshore seismic reflection program around Tasmania has led to a better understanding of the geometry and relationships between the basement elements of Tasmania and younger basins.
-
A recent Geoscience Australia sampling survey in the Bight Basin recovered hundreds of dredge samples of Early Cenomanian to Late Maastrichtian age. Given the location of these samples near the updip northern edge of the Ceduna Sub-basin, they are all immature for hydrocarbon generation with vitrinite reflectance - 0.5% RVmax, Tmax < 440oC and PI < 0.1. Excellent hydrocarbon generative potential is seen for marine, outer shelf, black shales and mudstones with TOC to 6.9% and HI up to 479 mg hydrocarbons/g TOC. These sediments are exclusively of Late Cenomanian-Early Turonian (C/T) in age. The high hydrocarbon potential of the C/T dredge samples is further supported by a dominance of the hydrogen-rich exinite maceral group (liptinite, lamalginite and telalginite macerals), where samples with the highest HI (> 200 mg hydrocarbons/g TOC) contain > 70% of the exinite maceral group. Pyrolysis-gas chromatography and pyrolysis-gas chromatography mass spectrometry of the C/T kerogens reveal moderate levels of sulphur compounds and the relative abundances of aliphatic and aromatic hydrocarbons predict the generation of a paraffinic-naphthenic-aromatic low wax oil in nature. Not enough oom for rest of Abstract
-
The under-explored deepwater Otway and Sorell basins lie offshore of southwestern Victoria and western Tasmania in water depths of 100-4,500 m. The basins developed during rifting and continental separation between Australia and Antarctica from the Cretaceous to Cenozoic and contain up to 10 km of sediments. Significant changes in basin architecture and depositional history from west to east reflect the transition from a divergent rifted continental margin to a transform continental margin. The basins are adjacent to hydrocarbon-producing areas of the Otway Basin, but despite good 2D seismic data coverage, they remain relatively untested and their prospectivity is poorly understood. The deepwater (>500 m) section of the Otway Basin has been tested by two wells, of which Somerset 1 recorded minor gas shows within the Upper Cretaceous section. Three wells have been drilled in the Sorell Basin, where minor oil and gas indications were recorded in Maastrichtian rocks near the base of Cape Sorell 1. Building on previous GA basin studies and using an integrated approach, new aeromagnetic data, open-file potential field, seismic and exploration well data have been used to develop new interpretations of basement structure and sedimentary basin architecture. Analysis of potential field data, integrated with interpretation of 2D seismic data, has shown that reactivated north-south Paleozoic structures, particularly the Avoca-Sorell Fault System, control the transition from extension through transtension to a dominantly strike-slip tectonic regime along this part of the southern margin. Depocentres to the west of this structure are large and deep in contrast to the narrow elongate depocentres to its east. Regional-scale mapping of key sequence stratigraphic surfaces across the basins has resulted in the identification of distinct basin phases. Three periods of upper crustal extension can be identified. In the north, one phase of extension in the Early Cretaceous and two in the Late Cretaceous can be mapped. However, to the south, the Late Cretaceous extensional phase extends into the Paleocene, reflecting the diachronous break-up history. Extension was followed by thermal subsidence, and during the Eocene-Oligocene the basin was affected by several periods of compression, resulting in inversion and uplift. The new seismic interpretation shows that depositional sequences hosting active petroleum systems in the producing areas of the Otway Basin are also likely to be present in the southern Otway and Sorell basins. Petroleum systems modelling suggests that if the equivalent petroleum systems elements are present, then they are mature for oil and gas generation, with generation and expulsion occurring mainly in the Late Cretaceous in the southern Otway and northern Sorell basins and during the Paleocene in the Strahan Sub-basin (southern Sorell Basin). The integration of sequence stratigraphic interpretation of seismic data, regional structural analysis and petroleum systems modelling has resulted in a clearer understanding of the tectonostratigraphic evolution of this complex basin system. The results of this study provide new insights into the geological controls on the development of the basins and their petroleum prospectivity.
-
Advanced burial and thermal geo-history modelling was carried out using Fobos Pro modelling software for the first time in Australia without relying on default or inferred values (such as heat flow or geothermal gradient). Our methodology is a substantial extension to the conventional approach.
-
The interpretation of two regional seismic reflection profiles and the construction of a balanced cross section through the southern Australian margin (Bight Basin) are designed to analyze the influence of the Australia-Antarctica continental breakup process on the kinematic evolution of the Cretaceous Ceduna delta system. The data shows that the structural architecture of this delta system consists of two stacked sub-delta systems. The lower White Pointer delta system (Late Albian-Santonian) is an unstable tectonic wedge, regionally detached seaward above Late Albian ductile shales. Sequential restorations suggest that the overall gravitational sliding behavior of the White Pointer delta wedge (~45 km of seaward extension, i.e., ~25%) is partially balanced by the tectonic denudation of the subcontinental mantle. We are able to estimate the horizontal stretching rate of the mantle exhumation between ~2 km Ma-1and 5 km Ma-1. The associated uplift of the distal part of the margin and associated flexural subsidence in the proximal part of the basin are partially responsible for the decrease of the gravitational sliding of the White Pointer delta system. Lithospheric failure occurs at ~84 Ma through the rapid exhumation of the mantle. The upper Hammerhead delta system (Late Santonian-Maastrichtian) forms a stable tectonic wedge developed during initial, slow seafloor spreading and sag basin evolution of the Australian side margin. Lateral variation of basin slope (related to the geometry of the underlying White Pointer delta wedge) is associated with distal raft tectonic structures sustained by high sedimentation rates. Finally, we propose a conceptual low-angle detachment fault model for the evolution of the Australian-Antarctica conjugate margins, in which the Antarctica margin corresponds to the upper plate and the Australian margin to the lower plate.
-
Legacy product - no abstract available