From 1 - 10 / 30
  • Using the wind multiplier code (https://pid.geoscience.gov.au/dataset/ga/82481) and an appropriate source of classified terrain data, wind multipliers for all of Queensland at (approximately) 25 metre resolution were created. The wind multipliers have been used to guide impact assessments as part of the Severe Wind Hazard Assessment for Queensland.

  • Eddy Covariance (EC) is considered a key atmospheric technique for quantifying CO2 leakage. However the complex and localised heterogeneity of a CO2 leak above the background environmental signal violates several of the critical assumptions made when implementing the EC technique, including: - That horizontal gradients in CO2 concentration are zero. - That horizontal and vertical gradients in the covariance of CO2 and orthogonal wind directions are zero. The ability of EC measurements of CO2 flux at the surface to provide information on the location and strength of CO2 leakage from below ground stores was tested during a 144 kg/day release event (27 March - 13 June 2012) at the Ginninderra controlled release facility. We show that the direction of the leak can be ascertained with some confidence although this depends on leak strength and distance from leak. Elevated CO2 levels are seen in the direction of the leakage area, however quantifying the emissions is confounded by the potential bias within each measurement through breaching of the assumptions underpinning the EC technique. The CO2 flux due to advection of the horizontal CO2 concentration gradients, thought to be the largest component of the error with the violation of the EC technique's assumptions, has been estimated using the modelling software Windtrax. The magnitude of the CO2 flux due to advection is then compared with the measured CO2 flux measured using the EC technique, to provide an initial assessment of the suitability of the EC technique to quantifying leakage source rates.

  • Global solar exposure is the total amount of solar energy falling on a horizontal surface. The daily global solar exposure is the total solar energy for a day. Typical values for daily global exposure range from 1 to 35 MJ/m2 (megajoules per square metre). For mid-latitudes, the values are usually highest in clear sun conditions during the summer, and lowest during winter or very cloudy days. The monthly means are derived from the daily global solar exposure. See metadata statement for more information.

  • Included fields: Record identifier - hm Bureau of Meteorology Station Number. Year Month Day Hours Minutes in YYYY,MM,DD,HH24,MI format in Local time Year Month Day Hours Minutes in YYYY,MM,DD,HH24,MI format in Local standard time Air Temperature in degrees C Quality of Air Temperature Wet bulb temperature in degrees C Quality of Wet Bulb Temperature Dew point temperature in degrees C Quality of Dew point Temperature Relative humidity in percentage % Quality of Relative humidity Wind speed in km/h Quality of Wind speed Wind direction in degrees Quality of Wind direction Speed of maximum wind gust in last 10 minutes in km/h Quality of speed of maximum wind gust in last 10 minutes Automatic Weather Station Flag

  • Eddy Covariance (EC) is considered a key atmospheric technique for quantifying CO2 leakage. However the complex and localised heterogeneity of a CO2 leak above the background environmental signal violates several of the critical assumptions made when implementing the EC technique, including: - That horizontal gradients in CO2 concentration are zero. - That horizontal and vertical gradients in the covariance of CO2 and orthogonal wind directions are zero. The ability of EC measurements of CO2 flux at the surface to provide information on the location and strength of CO2 leakage from below ground stores was tested during a 144 kg/day release event (27 March - 13 June 2012) at the Ginninderra controlled release facility. We show that the direction of the leak can be ascertained with some confidence although this depends on leak strength and distance from leak. Elevated CO2 levels are seen in the direction of the leakage area, however quantifying the emissions is confounded by the potential bias within each measurement through breaching of the assumptions underpinning the EC technique. The CO2 flux due to advection of the horizontal CO2 concentration gradients, thought to be the largest component of the error with the violation of the EC technique's assumptions, has been estimated using the modelling software Windtrax. The magnitude of the CO2 flux due to advection is then compared with the measured CO2 flux measured using the EC technique, to provide an initial assessment of the suitability of the EC technique to quantifying leakage source rates.

  • Global solar exposure is the total amount of solar energy falling on a horizontal surface. The hourly global solar exposure is the total solar energy for one hour. Typical values for hourly global exposure range up to 4 MJ/m2 (megajoules per square metre). The values are usually highest in the middle of the day and around summer, with localised variations caused mainly by variations in atmospheric conditions, primarily cloudiness. See metadata statement for more information.

  • A metadata report for the atmospheric monitoring station installed in Arcturus, south of Emerald in central Queensland. The station was installed for baseline atmospheric monitoring to contribute to emission modelling spanning 2010-2014. The station included compositional gas analysers, supporting meteorological sensors and an eddy covariance flux tower. The metadata covered in the report include: the major variables measured by each instrument, the data duration and frequency, data accuracy, calibration and corrections, the location the data is stored, and the primary contact for the data.

  • The Australian Solar Energy Information System V3.0 has been developed as a collaborative project between Geoscience Australia and the Bureau of Meteorology. The product provides pre-competitive spatial information for investigations into suitable locations for solar energy infrastructure. The outcome of this project will be the production of new and improved solar resource data, to be used by solar researchers and the Australian solar power industry. it is aimed to facilitate broad analysis of both physical and socio-economic data parameters which will assist the solar industry to identify regions best suited for development of solar energy generation. It also has increased the quality and availability of national coverage solar exposure data, through the improved calibration and validation of satellite based solar exposure gridded data. The project is funded by the Australian Renewable Energy Agency. The ASEIS V3.0 has a solar database of resource mapping data which records and/or map the following Solar Exposure over a large temporal range, energy networks, infrastructure, water sources and other relevant data. ASEIS V3.0 has additional solar exposure data provided by the Bureau of Meteorology. - Australian Daily Gridded Solar Exposure Data now ranges from 1990 to 2013 - Australian Monthly Solar Exposure Gridded Data now ranges from 1990 to 2013 - Australian Hourly Solar Exposure Gridded Data now ranges from 1990 to 2012 ASEIS V3.0 also has a new electricity transmission reference dataset which allows for information to be assessed on any chosen region against the distance to the closest transmission powerline.