From 1 - 10 / 21
  • <div>Levelling of geochemical data between surveys is a vital step in using datasets together. This code can apply a number of approaches to eliminate inter-laboratory differences from multi-generational and spatially isolated geochemical surveys. This codes allow the use of a variety of levelling methods: re-analysis, single standards, and multiple standards. The methodology and effectiveness of each of these methods are outlined in Main, P.T. and Champion, D.C., 2022. Levelling of multi-generational and spatially isolated geochemical surveys. Journal of Geochemical Exploration.</div>

  • Exploring for the Future (EFTF) is an Australian Government program led by Geoscience Australia, in partnership with state and Northern Territory governments. This first phase of the EFTF program (2016–2020) aimed to assist industry investment in resource exploration in frontier regions of northern Australia by providing precompetitive data and information about energy, mineral and groundwater resource potential. As part of this initiative, this record presents whole-rock inorganic geochemistry data including X-ray fluorescence (XRF) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analyses and quantitative X-ray diffraction (qXRD) results for 67 drill core and cuttings samples of sedimentary rocks from Barnicarndy 1 drilled in the Barnicarndy Graben of the Canning Basin. The inorganic geochemistry analyses were undertaken by Geoscience Australia and Bureau Veritas (BV). This work complements other components of the EFTF program, including a comprehensive sampling program of the Barnicarndy 1 deep stratigraphic well, the Kidson Sub-basin seismic survey, and the Kidson Sub-basin petroleum systems model to better understand the geological evolution, basin architecture and petroleum prospectivity of the region.

  • <div>Diamond exploration over the past decade has led to the discovery of a new province of kimberlitic pipes (the Webb Province) in the Gibson Desert of central Australia. The Webb pipes comprise sparse macrocrystic olivine set in a groundmass of olivine, phlogopite, perovskite, spinel, clinopyroxene, titanian-andradite and carbonate. The pipes resemble ultramafic lamprophyres (notably aillikites) in their mineralogy, major and minor oxide chemistry, and initial 87Sr/ 86Sr and <em>ε</em>Nd-<em>ε</em>Hf isotopic compositions. Ion probe U-Pb geochronology on perovskite (806 ± 22 Ma) indicates the eruption of the pipes was co-eval with plume-related magmatism within central Australia (Willouran-Gairdner Volcanic Event) associated with the opening of the Centralian Superbasin and Rodinia supercontinent break-up. The equilibration pressure and temperature of mantle-derived garnet and chromian (Cr) diopside xenocrysts range between 17 and 40 kbar and 750–1320°C and define a paleo-lithospheric thickness of 140 ± 10 km. Chemical variations of xenocrysts define litho-chemical horizons within the shallow, middle, and deep sub-continental lithospheric mantle (SCLM). The shallow SCLM (50–70 km), which includes garnet-spinel and spinel lherzolite, contains Cr diopside with weakly refertilized rare earth element compositions and unenriched compositions. The mid-lithosphere (70–85 km) has lower modal abundances of Cr diopside. This layer corresponds to a seismic mid-lithosphere discontinuity interpreted as pargasite-bearing lherzolite. The deep SCLM (&gt;90 km) comprises refertilized garnet lherzolite that was metasomatized by a silicate-carbonatite melt.</div><div><br></div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div><div><strong>Citation:</strong></div><div>Sudholz, Z. J., et al. (2023). Petrology, age, and rift origin of ultramafic lamprophyres (aillikites) at Mount Webb, a new alkaline province in Central Australia. <i>Geochemistry, Geophysics, Geosystems</i>, 24, e2023GC011120.</div><div>https://doi.org/10.1029/2023GC011120</div>

  • <div>This dataset comprises hydrochemistry results for groundwater, surface water, and rainwater samples collected as part of the Upper Darling Floodplain groundwater study. Associated methods, interpretation, and integration with other datasets are found in the Upper Darling Floodplain geological and hydrogeological assessment (Geoscience Australia Ecat ID:149689). This project is part of the Exploring for the Future (EFTF) program, an eight-year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program. The dataset contains 68 groundwater samples, 17 surface water samples, and four rainwater samples. Groundwater samples are from the Cenozoic formations within the alluvium of the Darling River, the Great Artesian Basin, and the Murray geological basin. Surface water samples are from the Darling River, and rainwater samples were taken within the study area. Subsets of the samples were analysed for major ions and trace metals, stable isotopes of water (δ2H and δ18O), radiocarbon (14C), stable carbon isotopes (δ13C), strontium isotopes (87Sr/86Sr), sulfur hexafluoride (SF6), chlorofluorocarbon (CFC) isotopes, chlorine-36 (36Cl), noble gases, and Radon-222. The results were used to inform a range of hydrogeological questions including aquifer distribution and quality, inter-aquifer connectivity, and groundwater-surface water connectivity.&nbsp;</div><div><br></div>

  • <div>Environmental DNA (eDNA), elemental and mineralogical analyses of soil have been shown to be specific to their source material, prompting consideration of the use of dust for forensic provenancing. Dust is ubiquitous in the environment and is easily transferred to items belonging to a person of interest, making dust analysis an ideal tool in forensic casework. The advent of Next Generation Sequencing technologies means that metabarcoding of eDNA can uncover microbial, fungal, and even plant genetic fingerprints in dust particles. Combining this with elemental and mineralogical compositions offers multiple, complementary lines of evidence for tracing the origin of an unknown dust sample. This is particularly pertinent when recovering dust from a person of interest to ascertain where they may have travelled. Prior to proposing dust as a forensic trace material, however, the optimum sampling protocols and detection limits need to be established to place parameters around its utility in this context. We tested several approaches to collecting dust from different materials and determined the lowest quantity of dust that could be analysed for eDNA, geochemistry and mineralogy, whilst still yielding results capable of distinguishing between sites. We found that fungal eDNA profiles could be obtained from multiple sample types and that tape lifts were the optimum collection method for discriminating between sites. We successfully recovered both fungal and bacterial eDNA profiles down to 3&nbsp;mg of dust (the lowest tested quantity) and recovered elemental and mineralogical compositions for all tested sample quantities. We show that dust can be reliably recovered from different sample types, using different sampling techniques, and that fungal, bacterial, and elemental and mineralogical profiles, can be generated from small sample quantities, highlighting the utility of dust as a forensic provenance material.</div> <b>Citation:</b> Nicole R. Foster, Belinda Martin, Jurian Hoogewerff, Michael G. Aberle, Patrice de Caritat, Paul Roffey, Robert Edwards, Arif Malik, Priscilla Thwaites, Michelle Waycott, Jennifer Young, The utility of dust for forensic intelligence: Exploring collection methods and detection limits for environmental DNA, elemental and mineralogical analyses of dust samples, <i>Forensic Science International </i>, Volume 344, 2023, 111599, ISSN 0379-0738, https://doi.org/10.1016/j.forsciint.2023.111599. ISSN 0379-0738,

  • <div>The ubiquitous nature of dust, along with localised chemical and biological signatures, makes it an ideal medium for provenance determination in a forensic context. Metabarcoding of dust can yield biological communities unique to the site of interest, similarly, geochemical and mineralogical analyses can uncover elements and minerals within dust than can be matched to a geographic location. Combining these analyses presents multiple lines of evidence as to the origin of collected dust samples. In this work, we investigated whether the time an item spent at a site collecting dust influenced the ability to assign provenance. We then integrated dust metabarcoding of bacterial and fungal communities into a framework amenable to forensic casework, (i.e., using calibrated log-likelihood ratios to predict the origin of dust samples) and assessed whether current soil metabarcoding databases could be utilised to predict dust origin. Furthermore, we tested whether both metabarcoding and geochemical/mineralogical analyses could be conducted on a single sample for situations where sampling is limited. We found both analyses could generate results capable of separating sites from a single swabbed sample and that the duration of time to accumulate dust did not impact site separation. We did find significant variation within sites at different sampling time periods, showing that bacterial and fungal community profiles vary over time and space – but not to the extent that they are non-discriminatory. We successfully modelled soil and dust samples for both bacterial and fungal diversity, developing calibrated log-likelihood ratio plots and used these to predict provenance for dust samples. We found that the temporal variation in community composition influenced our ability to predict dust provenance and recommend reference samples be collected as close to the sampling time as possible. Thus, our framework showed soil metabarcoding databases are capable of being used to predict dust provenance but the temporal variation in metabarcoded communities will need to be addressed to improve provenance estimates.&nbsp;</div> <b>Citation:</b> Nicole R. Foster, Duncan Taylor, Jurian Hoogewerff, Michael G. Aberle, Patrice de Caritat, Paul Roffey, Robert Edwards, Arif Malik, Michelle Waycott and Jennifer M. Young, The secret hidden in dust: Uncovering the potential to use biological and chemical properties of the airborne soil fraction to assign provenance and integrating this into forensic casework, <i>Forensic Science International: Genetics,</i> (2023) doi:https://doi.org/10.1016/j.fsigen.2023.102931

  • <div>Geoscience Australia’s Exploring for the Future (EFTF) program aims to enhance decision-making on Australia's mineral, energy, and groundwater resources by providing comprehensive geoscience data. Launched in 2016 with a $225m investment, the program has spawned various national projects, including the Australia's Resources Framework (ARF). The ARF focuses on a national perspective of Australia's surface and subsurface geology, supporting economic and social benefits, including transition to net-zero emissions.</div><div><br></div><div>One key sub-project within EFTF is the Geochemistry for Basin Prospectivity (G4BP) module. It explores Australian basins for basin-hosted base metal systems. The current focus (2020-2024) is on the Stuart Shelf region in South Australia, in collaboration with the Geological Survey of South Australia (GSSA) and CSIRO. The efforts aim to refine our understanding of sediment-hosted copper-cobalt-silver (Cu-Co-Ag) potential in this area.</div><div><br></div><div>This work has two primary objectives:</div><div><br></div><div>Geochemical fingerprinting and baseline data collection: Comprehensive data collection and reanalysis of existing samples aim to establish baseline geochemistry for stratigraphic units.</div><div>Mineral system components: Identification of potential metal sources, fluid sources, and trap rocks using a mineral systems approach.</div><div><br></div><div>This data release forms the second stage release of new geochemical data for the Stuart Shelf region; the first stage release was detailed in Champion et al. (2023b). There is also an earlier data release (Champion et al., 2023a) featuring reanalysis, by modern analytical methods, of legacy mineralised and/or altered Stuart Shelf and underlying basement samples held at Geoscience Australia.</div>

  • <div>Lithospheric structure and composition have direct relevance for our understanding of mineral prospectivity. Aspects of the lithosphere can be imaged using geophysical inversion or analysed from exhumed samples at the surface of the Earth, but it is a challenge to ensure consistency between competing models and datasets. The LitMod platform provides a probabilistic inversion framework that uses geology as the fabric to unify multiple geophysical techniques and incorporates a priori geochemical information. Here, we present results from the application of LitMod to the Australian continent. The rasters summarise the results and performance of a Markov-chain Monte Carlo sampling from the posterior model space. Release KY22 is developed using the primary-mode Rayleigh phase velocity grids of Yoshizawa (2014).</div><div><br></div><div>Geoscience Australia's Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia's geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia's transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia's regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div>

  • <div>The lithology, geochemistry, and architecture of the continental lithospheric mantle (CLM) underlying the Kimberley Craton of north-western Australia has been constrained using pressure-temperature estimates and mineral compositions for &gt;5,000 newly analyzed and published garnet and chrome (Cr) diopside mantle xenocrysts from 25 kimberlites and lamproites of Mesoproterozoic to Miocene age. Single-grain Cr diopside paleogeotherms define lithospheric thicknesses of 200–250 km and fall along conductive geotherms corresponding to a surface heat flow of 37–40 mW/m 2. Similar geotherms derived from Miocene and Mesoproterozoic intrusions indicate that the lithospheric architecture and thermal state of the CLM has remained stable since at least 1,000 Ma. The chemistry of xenocrysts defines a layered lithosphere with lithological and geochemical domains in the shallow (&lt;100 km) and deep (&gt;150 km) CLM, separated by a diopside-depleted and seismically slow mid-lithosphere discontinuity (100–150 km). The shallow CLM is comprised of Cr diopsides derived from depleted garnet-poor and spinel-bearing lherzolite that has been weakly metasomatized. This layer may represent an early (Meso to Neoarchean?) nucleus of the craton. The deep CLM is comprised of high Cr2O3 garnet lherzolite with lesser harzburgite, and eclogite. The peridotite components are inferred to have formed as residues of polybaric partial mantle melting in the Archean, whereas eclogite likely represents former oceanic crust accreted during Paleoproterozoic subduction. This deep CLM was metasomatized by H2O-rich melts derived from subducted sediments and high-temperature FeO-TiO2 melts from the asthenosphere.</div><div><br></div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div><div><strong>Citation:</strong></div><div>Sudholz, Z.J., et al. (2023) Mapping the Structure and Metasomatic Enrichment of the Lithospheric Mantle Beneath the Kimberley Craton, Western Australia,&nbsp;<em><i>Geochemistry, Geophysics, Geosystems</i>,</em>&nbsp;24, e2023GC011040.</div><div>https://doi.org/10.1029/2023GC011040</div>

  • <div>This guide and template details data requirements for submission of mineral deposit geochemical data to the Critical Minerals in Ores (CMiO) database, hosted by Geoscience Australia, in partnership with the United States Geological Survey and the Geological Survey of Canada. The CMiO database is designed to capture multielement geochemical data from a wide variety of critical mineral-bearing deposits around the world. Samples included within this database must be well-characterized and come from localities that have been sufficiently studied to have a reasonable constraint on their deposit type and environment of formation. As such, only samples analysed by modern geochemical methods, and with certain minimum metadata attribution, can be accepted. Data that is submitted to the CMiO database will also be published via the Geoscience Australia Portal (portal.ga.gov.au) and Critical Minerals Mapping Initiative Portal (https://portal.ga.gov.au/persona/cmmi).&nbsp;</div><div><br></div>