From 1 - 10 / 20
  • This report contains new whole-rock and isotope geochemical data, associated sample metadata, an assessment of the data’s quality assurance, for 742 samples collected in and around the Curnamona and Delamerian provinces, across numerous drillcore sampling campaigns through 2021-23. The data can be downloaded via the Geoscience Australia EFTF portal (https://portal.ga.gov.au/persona/eftf) or in the files attached with this record (http://pid.geoscience.gov.au/dataset/ga/148651). Geochemical sampling in the Curnamona region straddles both South Australia and New South Wales. The objective of sampling was to obtain representative coverage (both stratigraphically and spatially) to support developing regional geochemical baselines (in conjunction with existing geochemistry). Thus, this sampling included both the Curnamona Province and the overlying basins (Eromanga Basin, Lake Eyre Basin). Whole-rock geochemistry is reported for 562 samples, with a subset of 13 samples analysed for Pb and Sr isotopes, and another subset of 36 samples analysed by thin section petrography (all presented herein). Geochemical sampling in the Delamerian region has focussed on available legacy drill core in South Australia, New South Wales and Victoria. The objective of sampling was to (systematically) constrain the geochemical character of magmatic rocks across the mainland extent of the Delamerian Orogen, as well as younger volcanics within the Delamerian Orogen and/or overlying cover. This geochemical sampling was conducted in conjunction with geochronology, mineral systems sampling and stratigraphic drilling (all components of the DCD project) to reinterpret the timing, character and fertility of the Delamerian Orogen. Whole-rock geochemistry is reported for 180 samples. Version 2.0 (published 28 November 2023) has added whole rock geochemistry for 22 new samples in the Delamerian region. The data products and report have been updated accordingly.

  • <div>Diamond exploration over the past decade has led to the discovery of a new province of kimberlitic pipes (the Webb Province) in the Gibson Desert of central Australia. The Webb pipes comprise sparse macrocrystic olivine set in a groundmass of olivine, phlogopite, perovskite, spinel, clinopyroxene, titanian-andradite and carbonate. The pipes resemble ultramafic lamprophyres (notably aillikites) in their mineralogy, major and minor oxide chemistry, and initial 87Sr/ 86Sr and <em>ε</em>Nd-<em>ε</em>Hf isotopic compositions. Ion probe U-Pb geochronology on perovskite (806 ± 22 Ma) indicates the eruption of the pipes was co-eval with plume-related magmatism within central Australia (Willouran-Gairdner Volcanic Event) associated with the opening of the Centralian Superbasin and Rodinia supercontinent break-up. The equilibration pressure and temperature of mantle-derived garnet and chromian (Cr) diopside xenocrysts range between 17 and 40 kbar and 750–1320°C and define a paleo-lithospheric thickness of 140 ± 10 km. Chemical variations of xenocrysts define litho-chemical horizons within the shallow, middle, and deep sub-continental lithospheric mantle (SCLM). The shallow SCLM (50–70 km), which includes garnet-spinel and spinel lherzolite, contains Cr diopside with weakly refertilized rare earth element compositions and unenriched compositions. The mid-lithosphere (70–85 km) has lower modal abundances of Cr diopside. This layer corresponds to a seismic mid-lithosphere discontinuity interpreted as pargasite-bearing lherzolite. The deep SCLM (&gt;90 km) comprises refertilized garnet lherzolite that was metasomatized by a silicate-carbonatite melt.</div><div><br></div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div><div><strong>Citation:</strong></div><div>Sudholz, Z. J., et al. (2023). Petrology, age, and rift origin of ultramafic lamprophyres (aillikites) at Mount Webb, a new alkaline province in Central Australia. <i>Geochemistry, Geophysics, Geosystems</i>, 24, e2023GC011120.</div><div>https://doi.org/10.1029/2023GC011120</div>

  • <div>Geochemistry of soils, stream sediments, and overbank sediments, plays an important part in informing geochemical environmental baselines, mineral prospectivity, and environmental management practices. Australia has a large number of such surveys, but they are spatially isolated and often used in isolation. First released in 2020, the Levelled Geochemical Baseline of Australia focused on levelling such surveys across the North Australian Craton, so that they could be used as a seamless dataset. This data release acts as an update to the Levelled Geochemical Baseline of Australia by changing the focus to national scale and incorporating recently reanalysed legacy samples.</div><div><br></div><div>This work was undertaken as part of the Exploring for the Future program, an eight-year program by the Australian government. The Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, was an eight year, $225m investment by the Australian Government.</div><div><br></div><div><br></div><div><br></div><div><br></div>

  • <div>This guide and template details data requirements for submission of mineral deposit geochemical data to the Critical Minerals in Ores (CMiO) database, hosted by Geoscience Australia, in partnership with the United States Geological Survey and the Geological Survey of Canada. The CMiO database is designed to capture multielement geochemical data from a wide variety of critical mineral-bearing deposits around the world. Samples included within this database must be well-characterized and come from localities that have been sufficiently studied to have a reasonable constraint on their deposit type and environment of formation. As such, only samples analysed by modern geochemical methods, and with certain minimum metadata attribution, can be accepted. Data that is submitted to the CMiO database will also be published via the Geoscience Australia Portal (portal.ga.gov.au) and Critical Minerals Mapping Initiative Portal (https://portal.ga.gov.au/persona/cmmi).&nbsp;</div><div><br></div>

  • Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. This package contains data generated in the field as part of stratigraphic drilling operations in the Delamerian region of the western New South Wales during 2023 funded through the Exploring for the Future program. A range of geological, geophysical and geochemical data are included, as well as associated borehole information such as core photographs. The data can be viewed and downloaded via the Geoscience Australia Portal - https://portal.ga.gov.au/. The data that is available is from several databases which are associated to this record. <i>These data are published with the permission of the CEO, Geoscience Australia. </i>

  • <div>The lithology, geochemistry, and architecture of the continental lithospheric mantle (CLM) underlying the Kimberley Craton of north-western Australia has been constrained using pressure-temperature estimates and mineral compositions for &gt;5,000 newly analyzed and published garnet and chrome (Cr) diopside mantle xenocrysts from 25 kimberlites and lamproites of Mesoproterozoic to Miocene age. Single-grain Cr diopside paleogeotherms define lithospheric thicknesses of 200–250 km and fall along conductive geotherms corresponding to a surface heat flow of 37–40 mW/m 2. Similar geotherms derived from Miocene and Mesoproterozoic intrusions indicate that the lithospheric architecture and thermal state of the CLM has remained stable since at least 1,000 Ma. The chemistry of xenocrysts defines a layered lithosphere with lithological and geochemical domains in the shallow (&lt;100 km) and deep (&gt;150 km) CLM, separated by a diopside-depleted and seismically slow mid-lithosphere discontinuity (100–150 km). The shallow CLM is comprised of Cr diopsides derived from depleted garnet-poor and spinel-bearing lherzolite that has been weakly metasomatized. This layer may represent an early (Meso to Neoarchean?) nucleus of the craton. The deep CLM is comprised of high Cr2O3 garnet lherzolite with lesser harzburgite, and eclogite. The peridotite components are inferred to have formed as residues of polybaric partial mantle melting in the Archean, whereas eclogite likely represents former oceanic crust accreted during Paleoproterozoic subduction. This deep CLM was metasomatized by H2O-rich melts derived from subducted sediments and high-temperature FeO-TiO2 melts from the asthenosphere.</div><div><br></div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div><div><strong>Citation:</strong></div><div>Sudholz, Z.J., et al. (2023) Mapping the Structure and Metasomatic Enrichment of the Lithospheric Mantle Beneath the Kimberley Craton, Western Australia,&nbsp;<em><i>Geochemistry, Geophysics, Geosystems</i>,</em>&nbsp;24, e2023GC011040.</div><div>https://doi.org/10.1029/2023GC011040</div>

  • <div>A novel method of estimating the silica (SiO2) and loss-on-ignition (LOI) concentrations for the North American Soil Geochemical Landscapes (NASGL) project datasets is proposed. Combining the precision of the geochemical determinations with the completeness of the mineralogical NASGL data, we suggest a ‘reverse normative’ or inversion approach to calculate first the minimum SiO2, water (H2O) and carbon dioxide (CO2) concentrations in weight percent (wt%) in these samples. These can be used in a first step to compute minimum and maximum estimates for SiO2. In a recursive step, a ‘consensus’ SiO2 is then established as the average between the two aforementioned estimates, trimmed as necessary to yield a total composition (major oxides converted from reported Al, Ca, Fe, K, Mg, Mn, Na, P, S, and Ti elemental concentrations + ‘consensus’ SiO2 + reported trace element concentrations converted to wt% + ‘normative’ H2O + ‘normative’ CO2) of no more than 100 wt%. Any remaining compositional gap between 100 wt% and this sum is considered ‘other’ LOI and likely includes H2O and CO2 from the reported ‘amorphous’ phase (of unknown geochemical or mineralogical composition) as well as other volatile components present in soil. We validate the technique against a separate dataset from Australia where geochemical (including all major oxides) and mineralogical data exist on the same samples. The correlation between predicted and observed SiO2 is linear, strong (R2 = 0.91) and homoscedastic. We also compare the estimated NASGL SiO2 concentrations with another publicly available continental-scale survey over the conterminous USA, the ‘Shacklette and Boerngen’ dataset. This comparison shows the new data to be a reasonable representation of SiO2 values measured on the ground over the same study area. We recommend the approach of combining geochemical and mineralogical information to estimate missing SiO2 and LOI by the recursive inversion approach in datasets elsewhere, with the caveat to validate results.</div><div><br></div><div>The major oxide concentrations, including those for the estimated SiO2 and LOI, for the NASGL A and C horizons are available for download, as CSV files. A worked example for five selected NASGL C horizon samples is also available for download, as an XLSX file.</div> <b>Citation:</b> P. de Caritat, E. Grunsky, D.B. Smith; Estimating the silica content and loss-on-ignition in the North American Soil Geochemical Landscapes datasets: a recursive inversion approach. <i>Geochemistry: Exploration, Environment, Analysis</i> 2023; 23 (3): 2023-039 doi: https://doi.org/10.1144/geochem2023-039 This article appears in multiple journals (Lyell Collection & GeoScienceWorld)

  • <div>This dataset comprises hydrochemistry results for groundwater, surface water, and rainwater samples collected as part of the Upper Darling Floodplain groundwater study. Associated methods, interpretation, and integration with other datasets are found in the Upper Darling Floodplain geological and hydrogeological assessment (Geoscience Australia Ecat ID:149689). This project is part of the Exploring for the Future (EFTF) program, an eight-year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program. The dataset contains 68 groundwater samples, 17 surface water samples, and four rainwater samples. Groundwater samples are from the Cenozoic formations within the alluvium of the Darling River, the Great Artesian Basin, and the Murray geological basin. Surface water samples are from the Darling River, and rainwater samples were taken within the study area. Subsets of the samples were analysed for major ions and trace metals, stable isotopes of water (δ2H and δ18O), radiocarbon (14C), stable carbon isotopes (δ13C), strontium isotopes (87Sr/86Sr), sulfur hexafluoride (SF6), chlorofluorocarbon (CFC) isotopes, chlorine-36 (36Cl), noble gases, and Radon-222. The results were used to inform a range of hydrogeological questions including aquifer distribution and quality, inter-aquifer connectivity, and groundwater-surface water connectivity.&nbsp;</div><div><br></div>

  • Exploring for the Future (EFTF) is an Australian Government program led by Geoscience Australia, in partnership with state and Northern Territory governments. This first phase of the EFTF program (2016–2020) aimed to assist industry investment in resource exploration in frontier regions of northern Australia by providing precompetitive data and information about energy, mineral and groundwater resource potential. As part of this initiative, this record presents whole-rock inorganic geochemistry data including X-ray fluorescence (XRF) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analyses and quantitative X-ray diffraction (qXRD) results for 67 drill core and cuttings samples of sedimentary rocks from Barnicarndy 1 drilled in the Barnicarndy Graben of the Canning Basin. The inorganic geochemistry analyses were undertaken by Geoscience Australia and Bureau Veritas (BV). This work complements other components of the EFTF program, including a comprehensive sampling program of the Barnicarndy 1 deep stratigraphic well, the Kidson Sub-basin seismic survey, and the Kidson Sub-basin petroleum systems model to better understand the geological evolution, basin architecture and petroleum prospectivity of the region.

  • <div>With a higher demand for lithium (Li), a better understanding of its concentration and spatial distribution is important to delineate potential anomalous areas. This study uses a digital soil mapping framework to combine data from recent geochemical surveys and environmental covariates to predict and map Li content across the 7.6 million km2 area of Australia. Soil samples were collected by the National Geochemical Survey of Australia at a total of 1315 sites, with both top (0–10 cm depth) and bottom (on average 60–80 cm depth) catchment outlet sediments sampled. We developed 50 bootstrap models using a Cubist regression tree algorithm for both depths. The spatial prediction models were validated on an independent Northern Australia Geochemical Survey dataset, showing a good prediction with an RMSE of 3.82 mg kg-1 for the top depth. The model for the bottom depth has yet to be validated. The variables of importance for the models indicated that the first three Landsat bands and gamma radiometric dose have a strong impact on Li prediction. The bootstrapped models were then used to generate digital soil Li prediction maps for both depths, which could select and delineate areas with anomalously high Li concentrations in the regolith. The map shows high Li concentration around existing mines and other potentially anomalous Li areas. The same mapping principles can potentially be applied to other elements.&nbsp;</div> <b>Citation:</b> Ng, W., Minasny, B., McBratney, A., de Caritat, P., and Wilford, J.: Digital soil mapping of lithium in Australia, <i>Earth Syst. Sci. Data</i>, 15, 2465–2482, https://doi.org/10.5194/essd-15-2465-2023, <b>2023</b>.