From 1 - 10 / 26
  • <p>The AusAEM Year 1 NT/QLD Airborne Electromagnetic Survey covers the Newcastle Waters and Alice Springs 1:1 Million map sheets in the Northern Territory and the Normanton and Cloncurry 1:1 Million map sheets in Queensland. CGG Aviation (Australia) Pty. Ltd. flew the 67,700-line kilometre survey between 2017 and 2018 using the TEMPEST® airborne electromagnetic system. Flown at 20-kilometre line spacing, data were acquired and processed under contract to Geoscience Australia. <p>This data package supersedes and replaces two earlier releases: June 11, 2018, and December 2018 (eCatID 120948) with revised calibrations and processing. Along with the regionally spaced (20 km) flight lines, it now includes 1,500 line kilometres of infill flying that was funded by private exploration companies and not previously released in view of time-bounded confidentiality agreements. The survey was commissioned by Geoscience Australia as part of the Exploring for the Future (EFTF) program. The EFTF program is led by Geoscience Australia (GA), in collaboration with the Geological Surveys of the Northern Territory, Queensland, South Australia and Western Australia, and is investigating the potential mineral, energy and groundwater resources in northern Australia and South Australia. The EFTF is a four-year $100.5 million investment by the Australian Government in driving the next generation of resource discoveries in northern Australia, boosting economic development across this region. This Data Release (Phase 1) Package contains the final survey deliverables produced by the contractor CGG, including: <p>a) The operations and processing report. <p>b) Final processed electromagnetic, magnetic and elevation point located line data. <p>c) Final processed electromagnetic, magnetic and elevation grids. <p>d) Conductivity estimates generated by the EM Flow® conductivity depth-imaging algorithm. <p>e) Graphical multi-plots of line data and EM Flow® conductivity sections. <p>f) Graphical stacked EM Flow® conductivity sections. <p>g) ESRI shape-files containing the flight line locations. <p>An updated release package (Phase 2), which contains results from our in-house inversion of the EM data (from this Phase 1 release), which includes the regional and infill areas are downloadable from the link provided in the Downloads tab.

  • The AusAEM Year 1 NT/QLD Airborne Electromagnetic Survey covers the Newcastle Waters and Alice Springs 1:1 Million map sheets in the Northern Territory, plus the Normanton and Cloncurry 1:1 Million map sheets in Queensland. The survey was flown at 20 kilometre line spacing and entails approximately 60,000 line kilometres of data in total. The data were acquired in 2017 and 2018 by CGG Aviation (Australia) Pty. Ltd. (CGG), under contract to Geoscience Australia, using the TEMPEST® airborne electromagnetic system. The data were also processed by CGG. This Tranche 1 data release package only contains approximately the first one third (19,500 line kilometres) of the survey data that were acquired between August 4 and October 7, 2017. The AusAEM Year 1 NT/QLD survey also included over 1,500 line kilometres of infill flying, that was funded by private exploration companies, in certain infill blocks within the survey area. These infill blocks and data are not part of this data release due to confidentiality agreements. The survey was commissioned by Geoscience Australia as part of the Exploring for the Future (EFTF) program. The EFTF program is led by Geoscience Australia (GA), in collaboration with the Geological Surveys of the Northern Territory, Queensland, South Australia and Western Australia, and is investigating the potential mineral, energy and groundwater resources in northern Australia and South Australia. The EFTF is a four-year $100.5 million investment by the Australian Government in driving the next generation of resource discoveries in northern Australia, boosting economic development across this region. This Data Release Package (Tranche 1, Phase 1) contains the final survey deliverables produced by the contractor CGG, including: (a) the operations and processing report, (b) final processed electromagnetic, magnetic and elevation point located line data, (c) final processed electromagnetic, magnetic and elevation grids, (d) conductivity estimates generated by the EM Flow® conductivity depth imaging algorithm, (e) graphical multiplots of line data and EM Flow® conductivity sections, (f) graphical stacked EM Flow® conductivity sections, (h) ESRI shapefiles containing the flight line locations. Future data release packages will contain data flown after October 7 2017 (Tranche 2, etc.) and further derived products (Phase 2, etc.).

  • The discovery of strategically located salt structures, which meet the requirements for geological storage of hydrogen, is crucial to meeting Australia’s ambitions to become a major hydrogen producer, user and exporter. The use of the AusAEM airborne electromagnetic (AEM) survey’s conductivity sections, integrated with multidisciplinary geoscientific datasets, provides an excellent tool for investigating the near-surface effects of salt-related structures, and contributes to assessment of their potential for underground geological hydrogen storage. Currently known salt in the Canning Basin includes the Mallowa and Minjoo salt units. The Mallowa Salt is 600-800 m thick over an area of 150 × 200 km, where it lies within the depth range prospective for hydrogen storage (500-1800 m below surface), whereas the underlying Minjoo Salt is generally less than 100 m thick within its much smaller prospective depth zone. The modelled AEM sections penetrate to ~500 m from the surface, however, the salt rarely reaches this level. We therefore investigate the shallow stratigraphy of the AEM sections for evidence of the presence of underlying salt or for the influence of salt movement evident by disruption of near-surface electrically conductive horizons. These horizons occur in several stratigraphic units, mainly of Carboniferous to Cretaceous age. Only a few examples of localised folding/faulting have been noted in the shallow conductive stratigraphy that have potentially formed above isolated salt domes. Distinct zones of disruption within the shallow conductive stratigraphy generally occur along the margins of the present-day salt depocentre, resulting from dissolution and movement of salt during several stages. This study demonstrates the potential AEM has to assist in mapping salt-related structures, with implications for geological storage of hydrogen. In addition, this study produces a regional near-surface multilayered chronostratigraphic interpretation, which contributes to constructing a 3D national geological architecture, in support of environmental management, hazard mapping and resource exploration. <b>Citation: </b>Connors K. A., Wong S. C. T., Vilhena J. F. M., Rees S. W. & Feitz A. J., 2022. Canning Basin AusAEM interpretation: multilayered chronostratigraphic mapping and investigating hydrogen storage potential. In: Czarnota, K (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146376

  • The Exploring for the Future (EFTF) program is unmatched for the scale of geoscience data acquisition across northern Australia, covering 37 648 individual land parcels and 2.9 million km2. The scale of works has raised many new challenges for Geoscience Australia (GA) through the diverse range of field activities, and the numerous stakeholders from different social and cultural backgrounds, across multiple jurisdictions. Success of the program depended on the development and maintenance of a social licence to operate. This was broadly achieved for fieldwork activities through early engagement with stakeholders, including free, prior and informed consent. Here, we present two case studies of stakeholder engagement for facilitation of data collection: one focuses on broadscale, low-impact field activities associated with the AusAEM survey; and the other on Indigenous-focused engagement related to the Barkly Seismic Survey. Because of the complexity of project planning and managing such a large number of stakeholders, GA’s project governance team was expanded; it now includes a dedicated Land and Marine Access team and a commitment to adopt world-leading engagement practices. One practice is to consider impacts and benefits for all stakeholders—not just landholders—of field activities and data acquisition programs. This includes a plan for how the data are delivered back to the communities and stakeholders, and how information exchanges can be built into projects. The aim is for stakeholders to hold GA in the highest regard and understand the benefits to the Australian people, and ultimately their own communities, from the geoscientific data that GA produces. <b>Citation:</b> Mouthaan, R., Buchanan, S. and Sweeney, M, 2020. Land access and Indigenous engagement for Australian geoscience. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • <div>This data package contains interpretations of airborne electromagnetic (AEM) conductivity sections in the Exploring for the Future (EFTF) program’s Eastern Resources Corridor (ERC) study area, in south eastern Australia. Conductivity sections from 3 AEM surveys were interpreted to provide a continuous interpretation across the study area – the EFTF AusAEM ERC (Ley-Cooper, 2021), the Frome Embayment TEMPEST (Costelloe et al., 2012) and the MinEx CRC Mundi (Brodie, 2021) AEM surveys. Selected lines from the Frome Embayment TEMPEST and MinEx CRC Mundi surveys were chosen for interpretation to align with the 20&nbsp;km line-spaced EFTF AusAEM ERC survey (Figure 1).</div><div>The aim of this study was to interpret the AEM conductivity sections to develop a regional understanding of the near-surface stratigraphy and structural architecture. To ensure that the interpretations took into account the local geological features, the AEM conductivity sections were integrated and interpreted with other geological and geophysical datasets, such as boreholes, potential fields, surface and basement geology maps, and seismic interpretations. This approach provides a near-surface fundamental regional geological framework to support more detailed investigations. </div><div>This study interpreted between the ground surface and 500&nbsp;m depth along almost 30,000 line kilometres of nominally 20&nbsp;km line-spaced AEM conductivity sections, across an area of approximately 550,000&nbsp;km2. These interpretations delineate the geo-electrical features that correspond to major chronostratigraphic boundaries, and capture detailed stratigraphic information associated with these boundaries. These interpretations produced approximately 170,000 depth estimate points or approximately 9,100 3D line segments, each attributed with high-quality geometric, stratigraphic, and ancillary data. The depth estimate points are formatted for compliance with Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository for standardised depth estimate points. </div><div>Results from these interpretations provided support to stratigraphic drillhole targeting, as part of the Delamerian Margins NSW National Drilling Initiative campaign, a collaboration between GA’s EFTF program, the MinEx CRC National Drilling Initiative and the Geological Survey of New South Wales. The interpretations have applications in a wide range of disciplines, such as mineral, energy and groundwater resource exploration, environmental management, subsurface mapping, tectonic evolution studies, and cover thickness, prospectivity, and economic modelling. It is anticipated that these interpretations will benefit government, industry and academia with interest in the geology of the ERC region.</div>

  • <div>The Australian wide airborne electromagnetic programme AusAEM stands as the largest survey of its kind aiming to cover the Australian continent at approximately 20 km line-spacing. It is transforming resource exploration, unveiling potential minerals and groundwater.&nbsp;</div><div><br></div><div>The open-access nature of AusAEM data and the modelling codes developed around it encourages collaboration between governments, industry, and academia, fostering a community focused on advancing geoscientific research and exploration.</div><div><br></div><div>Overall, the AusAEM program is an asset that can drive economic growth, support sustainable resource management, and enhance scientific understanding of Australia’s geological landscape.</div><div><br></div>

  • <p>Geoscience Australia commissioned the AusAEM Year 1 NT/QLD survey as part of the Exploring for the Future (EFTF) program, flown over parts of the Northern Territory and Queensland. The EFTF program is led by Geoscience Australia (GA), in collaboration with the Geological Surveys of the Northern Territory, Queensland, South Australia and Western Australia. The program was designed to investigate the potential mineral, energy and groundwater resources in northern Australia and South Australia. <p>The survey was flown during the 2017-2018 field season, using the TEMPEST® airborne electromagnetic (AEM) system operated by CGG Aviation (Australia) Pty. Ltd under contract to Geoscience Australia. AusAEM Year 1 was acquired with a 20-kilometre line separation and collected over 60,000 line kilometres of data in total. The AusAEM Year 1 NT/QLD survey also includes over 1,500 line kilometres of infill flying, which, was funded by private exploration companies in certain infill blocks within the survey area. The data from these infill blocks are now part of Geoscience Australia release to the public domain, for use in the minerals, energy and groundwater sectors. <p> Previously Released data (Phase 1) <p>In December 2018, we released a package, which contains data from the AusAEM Year 1 NT/QLD Airborne Electromagnetic Survey Phase 1. <p>This data package, with eCat ID 124092 titled “AusAEM Year 1 NT/QLD Airborne Electromagnetic Survey, TEMPEST® airborne electromagnetic data and Em Flow® conductivity estimates”. The package contains a) survey logistics and processing report, b) final processed electromagnetic, magnetic and elevation point located line data, c) processed electromagnetic, magnetic and elevation grids, d) point located conductivity estimates from EM Flow®, e) multi-plots of line data and conductivity sections, all produced by the contractor CGG Aviation (Australia) Pty. These products are downloadable from Geoscience Australia’s website: (See http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_124092). <p>The data provides new insights into vast areas in Northern Australia that have not been extensively explored previously. <p>Current Release (Phase 2) <p>This Phase 2 data release package contains results from inverting the electromagnetic data in the Phase 1 release. The inversion results were generated using Geoscience Australia's sample-by-sample layered-earth (1D) inversion, a deterministic regularized gradient-based algorithm, which we call GALEISBS (Brodie, 2016). <p>For the inversion of TEMPEST AEM data we have conventionally inverted the total (primary plus secondary) measured X-and Z-component data simultaneously to produce a single smooth layered conductivity model. To achieve convergence and derive an acceptable model and acceptable data misfits, we have found that it is necessary to solve for three geometry parameters; (1) Transmitter (Tx) –Receiver (Rx) horizontal in-line and 2) vertical separations and 3) the receiver pitch. This is the case even with the new Rx bird IMU measurements and calibrated data (Ley-Cooper et.al, 2019.). <p>We have extended the GALEISBS functionality to allow inversion of the vector sum of the X- and Z-component data. The rationale of modifying the algorithm is to eliminate the need to solve for Rx pitch, since the vector sum of the X- and Z-component data are insensitive to the Rx pitch. In doing this, we are gaining some robustness by not having to solve for one of the geometry parameters; however, the trade-off is that we are in essence losing the information implicit in the vector component data. <p>The inversions we deliver here we derived from a recently implemented XZ–vector-sum inversion, described in Ley-Cooper et.al, 2019. <p>The GALEISBS inversion products are available for download in parts based on the type of derived product. These are zipped into the following three files: <p>1. galeisbs_vector_sum_point_located_data_ascii.zip <p>2. galeisbs_vector_sum_point_located_data_geosoft.zip <p>3. galeisbs_vector_sum_sctions.zip <p>4. galeisbs_vector_sum_gocad_sgrids.zip

  • <div>In Australia, wide-spread sedimentary basin and regolith cover presents a key challenge to explorers, environmental managers and decision-makers, as it obscures underlying rocks of interest. To address this, a national coverage of airborne electromagnetics (AEM) with a 20&nbsp;km line-spacing is being acquired. This survey is acquired as part of the Exploring for the Future program and in collaboration with state and territory geological surveys. This survey presents an opportunity for regional geological interpretations on the modelled AEM data, helping constrain the characteristics of the near-surface geology beneath the abundant cover, to a depth of up to ~500&nbsp;m.</div><div> The AEM conductivity sections were used to delineate key chronostratigraphic boundaries, e.g. the bases of geological eras, and provide a first-pass interpretation of the subsurface geology. The interpretation was conducted with a high level of data integration with boreholes, potential fields geophysics, seismic, surface geology maps and solid geology maps. This approach led to the construction of well-informed geological interpretations and provided a platform for ongoing quality assurance and quality control of the interpretations and supporting datasets. These interpretations are delivered across various platforms in multidimensional non-proprietary open formats, and have been formatted for direct upload to Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository of multidisciplinary subsurface depth estimates.</div><div> These interpretations have resulted in significant advancements in our understanding of Australia’s near-surface geoscience, by revealing valuable information about the thickness and composition of the extensive cover, as well as the composition, structure and distribution of underlying rocks. Current interpretation coverage is ~110,000 line kilometres of AEM conductivity sections, or an area &gt;2,000,000&nbsp;km2, similar to the area of Greenland or Saudi Arabia. This ongoing work has led to the production of almost 600,000 depth estimate points, each attributed with interpretation-specific metadata. Three-dimensional line work and over 300,000 points are currently available for visualisation, integration and download through the GA Portal, or for download through GA’s eCat electronic catalogue. </div><div> These interpretations demonstrate the benefits of acquiring broadly-spaced AEM surveys. Interpretations derived from these surveys are important in supporting regional environmental management, resource exploration, hazard mapping, and stratigraphic unit certainty quantification. Delivered as precompetitive data, these interpretations provide users in academia, government and industry with a multidisciplinary tool for a wide range of investigations, and as a basis for further geoscientific studies.</div> Abstract submitted and presented at 2023 Australian Earth Science Convention (AESC), Perth WA (https://2023.aegc.com.au/)

  • Airborne electromagnetic data generated by the AusAEM Survey are shown to map mineral deposit host rocks and regional geological features within the AusAEM Survey area. We have developed new functionality in Geoscience Australia’s sample-by-sample layered earth inversion algorithm, allowing inversion of the magnitude of the combined vector sum of the X- and Z-components of TEMPEST AEM data. This functionality improves the clarity of inverted interpretation products by reducing the degree of along-line incoherency inherent to stitched 1D inversions. The new inversion approach improves the interpretability of sub-horizontal conductors, allowing better mapping of geological features under cover. Examples of geological mapping by the AusAEM survey highlight the utility of wide line spacing, regional AEM surveying to improve geological, mineral systems and groundwater resource understanding in the regions flanking outcropping mineral deposit host rocks in northern Australia. Presented at the 2019 Australasian Exploration Geoscience Conference

  • This animation shows how Airborne Electromagnetic Surveys Work. It is part of a series of Field Activity Technique Engagement Animations. The target audience are the communities that are impacted by our data acquisition activities. There is no sound or voice over. The 2D animations include a simplified view of what AEM equipment looks like, what the equipment measures and how the survey works.