From 1 - 10 / 109
  • The Kowan District occupies the north-eastern lobe of the A.C.T., to the north-east of Queanbeyan. The purpose of the survey was to determine the general geology and structure of the Kowen District as part of a planned mapping of the whole of the A.C.T. In addition a search was made for commercial occurrences of rock suitable for use as a building stone. Field work was extended over most of January and February, 1949. Igneous intrusions were plotted directly onto aerial photographs where possible. Strikes of beds and faults and other suitable information were measured by prismatic compass and dips and pitches were measured by Abney level or clinometer compass. Information was then plotted on a Federal Territory feature map. A full account of this survey work and its findings is given in this report. Descriptions of specimens and geological plans of the district are appended.

  • Multichannel seismic data collected off Wilkes Land (East Antarctica) reveal four main units that represent distinct phases in the evolution of the Cenozoic depositional environment. A Cretaceous synrift succession is overlain by hemipelagic and distal terrigenous sequences deposited during Phase 1. Sediment ridges and debris-flow deposits mark the transition to Phase 2. Unit 3 records the maximum sediment input from the continent and is characterized by the predominance of turbidite deposits. During Phase 4 the sediment supply from the continental margin was reduced, and draping and filling were the dominant processes on the continental rise. Unit 4 also contains the deposits of sediment wave fields and asymmetric channel-levee systems. These four units are a response to the Cenozoic evolution of the East Antarctic Ice Sheet. During Phase 1, small ice caps were formed in the innermost continental areas. The ice volume increased under temperate glacial regimes during Phases 2 and 3, when large volumes of melt-water production led to high sediment discharge to the continental rise. Change to a polar regime occurred through Phase 4, when a thick prograding wedge developed on the continental shelf and slope and the sediment transport to the rise diminished, producing general starvation conditions.

  • These preliminary notes deal with the sequence as it is found in the Giralia Structure. The analysis of the Cretaceous-Tertiary megafauna is described. The findings of the investigation with respect to the sedimentary sequence are discussed.

  • The writer spent four days in 1949 in the Adaminaby-Kiandra Area with J. Glover mapping the country north-north-east of the present Tunnel Line. In 1951 a fortnight more was spent on the Tunnel Lines themselves by the writer under the guidance of senior geologist D.C. Moye and geologists K. Sharp and C. Wood, who provided a large amount of information not yet available in written form. All sediments in the Tunnel Area are Ordovician, and in the case of the Tumut Pond beds an even older age is possible.

  • Our understanding of the geological history and evolution of many parts of Australia is at the reconnaissance level. This is true to a large extent for much of the Proterozoic of North Australia. We have reasonably good 1:250,000 scale geological maps {and in small parts even better 1:100,000 maps} which show the distribution of rock units and the broad structural features of the exposed sequences. However, in most areas we only have rudimentary ideas on tectonic setting and geological evolution because of a lack of isotopic dating and detailed structural and sedimentological studies. Coherent analyses of basin type, configuration, and evolution, in the framework of modern plate tectonic models, are not available for much of the North Australian Proterozoic. The information presented in this guide book results largely from detailed stratigraphic and sedimentological studies undertaken between 1977 and 1981 in the McArthur River region, supplemented by surface and drillcore studies in 1984/85 near the Roper River. Unfortunately, these more detailed studies cover only about half of the area defined as the McArthur Basin and as noted below this 'basin' is probably only part of a much larger depositional feature. Therefore, even after some detailed studies our knowledge is fragmentary and incomplete and our interpretations somewhat tentative. The results from the sedimentological studies in the McArthur River region have been compiled in detail in BMR Bulletin 220 {Jackson & others, in press}. We had hoped that this would be available for the excursion; unfortunately, this has not been possible. As there is no other satisfactory synthesis of this information we have condensed and summarised relevant parts of it and included these in the guide book. A 1:100,000 scale geological map of the area containing most of the localities we shall visit is included with this guide book.

  • Seismic reflection data show the existence of two major sedimentary basins along the continental margin of Wilkes Land and Terre Adélie, East Antarctica, that contain more than 5 s TWT (> 9 km) of sediments. Four seismic megasequences are identified (MS4 to MS1) that are bounded by: basement, unconformities of interpreted Turonian, Maastrichtian and early Middle Eocene age, and the seafloor. The 4-5 km thick rift and pre-rift sediments are concentrated in a margin-parallel basin (Sabrina Basin). On the basis of seismic correlation with the Australian margin, this basin is interpreted to be of Late Jurassic to mid-Cretaceous age. The post-rift sediments are generally thick along the margin and in the adjacent deep-ocean basin, but are particularly thick in a major depocentre off west Wilkes Land, named here the Budd Coast Basin (BCB). The BCB contains a maximum observed thickness of 5 s TWT (9 km) of post-rift sediments and its location suggests that the sediments were largely derived from a sub-glacial basin currently occupied by the Totten Glacier.

  • This record contains the substantive results of Geoscience Australia marine survey SS08/2005 to the SW margin of Australia. The survey was completed between 28 September and 20 October 2005 using Australia’s national facility research vessel Southern Surveyor. The survey included scientists from Geoscience Australia, CSIRO – Marine and Atmospheric Research, and Victoria Museum. The survey was co‐funded by Geoscience Australia and the Department of the Environment and Heritage (now the Department of the Environment, Water, Heritage and the Arts). The principal aims of the survey were to explore deep‐sea habitats and processes in submarine canyons on the SW margin, and examine the geology of the underlying Mentelle Basin as an assessment for its petroleum potential.

  • The study of palaeotsunamis preserved in the sedimentary record has developed over the past three decades to a point where the criteria used to identify these events range from well-tested and accepted to new methods yet to receive wide application. In this paper we review progress with the development of these criteria and identify opportunities for refinements and for extending their application to new settings. The emphasis here is on promoting the use of multiple proxies, selected to best match the context of the site or region of interest. Ultimately, this requires that palaeotsunami research must be a multidisciplinary endeavour and indeed, extend beyond the geological sciences of sedimentology and stratigraphy to include knowledge and approaches from field such as archaeology, anthropology and sociology. We also argue that in some instances, despite the use of multiple proxies, the ev

  • A growing need to manage marine biodiversity sustainably at local, regional and global scales cannot be met by applying the limited existing biological data. Abiotic surrogates of biodiversity are thus increasingly valuable in filling the gaps in our knowledge of biodiversity patterns, especially identification of hotspots, habitats needed by endangered or commercially valuable species and systems or processes important to the sustained provision of ecosystem services. This review examines the use of abiotic variables as surrogates for patterns in benthic assemblages with particular regard to how variables are tied to processes affecting biodiversity and how easily those variables can be measured at scales relevant to resource management decisions.

  • Two facies models are proposed to explain siliciclastic and carbonate depositional systems of 1800 Ma to 1640 Ma age in the Western Fold Belt of the Mt Isa Inlier. Both models record the response of depositional systems to storm-driven processes of sediment transport, dispersal and deposition on a shallow water shelf. The same suite of facies belts can also be identified in sedimentary successions of the Eastern Fold Belt. Slope driven processes of sediment transport and dispersal characterise turbidite and debrite deposits of the Soldiers Cap Group and Kuridala Formation and provide evidence for significantly greater water depths in this part of the basin from ~1685 Ma. Through the recognition of unconformity surfaces, their correlative conformities, maximum flooding and ravinement surfaces the facies belts are packaged into 7 supersequences for the interval 1800-1640 Ma. The new correlations are shown in an Event Chart that correlates linked depositional systems across the entire Mt Isa Inlier. Thick successions of turbidite and debrite deposits are restricted to the eastern parts of the Mt Isa Inlier and do not occur in the Western Fold Belt. A major phase of extension and rifting commenced at ~1740 Ma and by ~1690 Ma led to significant crustal thinning and increased rates of accommodation over an area east of the Selwyn Fault and Burke River Structural Belt. In the Mitakoodi and Selwyn Blocks the rapid transition from shallow water shelf depositional systems of the Prize Supersequence to significantly deeper water slope environments of the Gun Supersequence coincided with the development of a platform margin, the deposition of turbidite and debrite deposits in deep water on the continental slope and the intrusion of mafic sills and dykes. Turbidite and debrite depositional systems of the Soldiers Cap Group and Kuridala Formations are restricted to a lowstand wedge of siliciclastic facies deposited basinward of a platform margin. Basin geometries and sediment architectures associated with this extensional event and recorded in the Gun Supersequence (~1685 Ma to 1650 Ma) provide an explanation for the geographic separation and fluid evolution pathways responsible for the Mt Isa Type and Broken Hill Type Zn-Pb-Ag deposits.