From 1 - 10 / 239
  • Cool-water carbonate environments may be responsible for up to one third of the carbonate sediment produced on continental shelves, and are useful modern analogues for many geologically ancient deposits. The extensive southern margin of the Australian continent is recognised as the world's largest modern example of a high energy, cool-water carbonate depositional realm. A number of studies have suggested that Quaternary sediment production here is largely influenced by oceanography, and that wave abrasion strongly limits sediment accumulation. Therefore, in this region the outer-shelf, below the storm wave base, is thought to be the focus of sediment accumulation. The inner shelf is considered a zone of active sediment production due to the proliferation of carbonate secreting organisms, although few studies have investigated sediment production or accumulation in this energetic and dynamic environment. The Recherche Archipelago, which sits at the western margin of the Great Australian Bight (GAB), was examined to better understand Quaternary shelf evolution and the importance of this type of inner shelf as a carbonate 'factory'. Surficial sediments, video, multibeam sonar data, cores and shallow seismics were collected. The present seabed of the archipelago features extensive areas where flat-lying limestones sit over the often irregular granite basement. The Pleistocene erosional surface is overlain by a coarse bivalve and rhodolith dominated gravel lag. Significantly, there are extensive Holocene deposits, up to 7 m thick, throughout the archipelago, particularly in association with granite islands. These deposits comprise cross-bedded gravelly carbonate sands dominated by fragments of calcareous algae (rhodoliths), molluscs and bryozoans. In contrast, the inshore and coast is dominated by terrigenous sediment. Seismic profiles and preserved palaeo-shoreline features suggest that slow but episodic aggradation of marine sediment has occurred on the inner shelf over successive Quaternary sea level cycles, although there are also extensive areas of non-deposition. This accumulation is partly attributable to the sheltering effect of high-relief granitic outcrops and cementation of subaerially exposed carbonate sediments.

  • High resolution multibeam bathymetry is used to map and interpret seabed geomorphology for part of the northern Lord Howe Rise plateau in the Tasman Sea. A mapping system of geomorphic units and elements is used, extending the previous hierarchy of geomorphic provinces and features used for the Australian margin. The mapped area covers ~25,500 km2 and incorporates broad ridges, valleys and plateaus. Superimposed on these features are clusters of volcanic peaks, smaller ridges, holes, scarps and aprons. An additional characteristic of the seabed in this area is an extensive network of polygonal furrows that cover the plateaus and the lower slopes of larger ridges. These furrows are formed in stiff, unconsolidated carbonate ooze that forms a near-continuous sediment cover across the area. Peaks are the only geomorphic feature not fully draped in pelagic ooze. The distribution of geomorphic units suggests strong controls from underlying geological structures. In water depths of 1400 m to 1600 m some peaks occur in clusters on ridges that sit above acoustic basement highs and volcanic intrusions. Elsewhere, broad plains and valleys slope to the southwest following the regional dip of the Lord Howe Rise plateau. In contrast, localised geomorphic elements such as moats and holes have likely explanation in terms of spatial variations in sedimentation rates in relation to bathymetric highs. Polygonal furrows are attributed to dewatering processes. The geomorphology of the seabed mapped in this study incorporates examples of forms that have not been previously mapped in such detail on the Australian margin. These are unlikely to be unique to the mapped area of the Lord Howe Rise and can be expected to occur elsewhere on the Rise and presumably on other parts of the Australian margin with a similar geological history.

  • Australia is increasingly recognised as a global hotspot for sponge biodiversity, with sponges playing key roles in habitat provision, water quality, bioerosion, and biodiscovery. Despite the intense focus on marine resource management in northern Australia, there is a large knowledge gap about sponge communities in this region. This study focuses on shelf environments of the Timor Sea, in particular the Van Diemen Rise and Londonderry Rise which are characterised by extensive carbonate terraces, banks and reefs, separated by soft sediment plains and deeply incised valleys. These carbonate terraces and banks are recognised as a Key Ecological Feature (KEF) in the marine region plans for northern Australia (North and Northwest Marine Regions) and are in part incorporated into the Oceanic Shoals Commonwealth Marine Reserve. To support the management of this marine reserve and its associated KEF, we use new datasets to investigate regional patterns in sponge assemblages and their relationships to seabed geomorphology. To do this, we use sponge assemblage data and multibeam-derived variables (depth, backscatter, slope, geomorphic feature) from seven survey areas located on the Van Diemen Rise (four sites) and Londonderry Rise (three sites), spanning approximately 320 km in an east-west direction. The dataset was collected during three collaborative surveys undertaken in 2009, 2010 and 2012 by Geoscience Australia, the Australian Institute of Marine Science and the Museum and Art Gallery of the Northern Territory as part of the Australian Government's Offshore Energy Security Initiative and the National Environmental Research Program Marine Biodiversity Hub. All surveys returned geophysical, biological, geochemical, and sedimentological data. Benthic biota were collected with a benthic sled across a range of geomorphic features (bank, terrace, ridge, plain, valley) identified from high-resolution multibeam sonar. Sponges were then taxonomically identified to 350 species, with the species accumulation curve indicating there may be over 900 sponge species in the region. Sponge assemblages were different between the Van Diemen Rise and Londonderry Rise, as well as between individual banks in the same area, indicating that different suites of species occurred at regional (east-west) and local (between banks) scales. Relationships between sponges and other multibeam-derived variables are more complex and warrant further research. The current study will help: i) facilitate integrated marine management by providing a baseline species inventory; ii) support the listing of carbonate banks of the Timor Sea shelf as a Key Ecological Feature, and; iii) inform future monitoring of marine protected area performance, particularly for areas of complex seabed geomorphology.

  • This resource contains surface sediment data for Bynoe Harbour collected by Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and Department of Land Resource Management (Northern Territory Government) during the period from 2-29 May 2016 on the RV Solander (survey SOL6432/GA4452). This project was made possible through offset funds provided by INPEX-led Ichthys LNG Project to Northern Territory Government Department of Land Resource Management, and co-investment from Geoscience Australia and Australian Institute of Marine Science. The intent of this four year (2014-2018) program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps that underpin marine resource management decisions. The specific objectives of the survey were to: 1. Obtain high resolution geophysical (bathymetry) data for outer Darwin Harbour, including Shoal Bay; 2. Characterise substrates (acoustic backscatter properties, grainsize, sediment chemistry) for outer Darwin Harbour, including Shoal Bay; and 3. Collect tidal data for the survey area. Data acquired during the survey included: multibeam sonar bathymetry and acoustic backscatter; physical samples of seabed sediments, underwater photography and video of grab sample locations and oceanographic information including tidal data and sound velocity profiles. This dataset comprises the results of sediment oxygen demand experiments undertaken on seabed sediments. A detailed account of the survey is provided in Siwabessy, P.J.W., Smit, N., Atkinson, I., Dando, N., Harries, S., Howard, F.J.F., Li, J., Nicholas W.A., Picard, K., Radke, L.C., Tran, M., Williams, D. and Whiteway, T., 2016. Bynoe Harbour Marine Survey 2017: GA4452/SOL6432 Post-survey report. Record 2017/04. Geoscience Australia, Canberra. Thanks to the crew of the RV Solander for help with sample collection, Matt Carey, Craig Wintle and Andrew Hislop from the Observatories and Science Support at Geoscience Australia for technical support and Jodie Smith for reviewing the data. This dataset is published with the permission of the CEO, Geoscience Australia

  • This resource contains surface sediment data for Bynoe Harbour collected by Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and Department of Land Resource Management (Northern Territory Government) during the period from 2-29 May 2016 on the RV Solander (survey SOL6432/GA4452). This project was made possible through offset funds provided by INPEX-led Ichthys LNG Project to Northern Territory Government Department of Land Resource Management, and co-investment from Geoscience Australia and Australian Institute of Marine Science. The intent of this four year (2014-2018) program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps that underpin marine resource management decisions. The specific objectives of the survey were to: 1. Obtain high resolution geophysical (bathymetry) data for outer Darwin Harbour, including Shoal Bay; 2. Characterise substrates (acoustic backscatter properties, grainsize, sediment chemistry) for outer Darwin Harbour, including Shoal Bay; and 3. Collect tidal data for the survey area. Data acquired during the survey included: multibeam sonar bathymetry and acoustic backscatter; physical samples of seabed sediments, underwater photography and video of grab sample locations and oceanographic information including tidal data and sound velocity profiles. This dataset comprises total chlorin concentrations, chlorin indices and porosity measured on seabed sediments. A detailed account of the survey is provided in Siwabessy, P.J.W., Smit, N., Atkinson, I., Dando, N., Harries, S., Howard, F.J.F., Li, J., Nicholas W.A., Picard, K., Radke, L.C., Tran, M., Williams, D. and Whiteway, T., 2016. Bynoe Harbour Marine Survey 2017: GA4452/SOL6432 Post-survey report. Record 2017/04. Geoscience Australia, Canberra. Thanks to the crew of the RV Solander for help with sample collection, Matt Carey, Craig Wintle and Andrew Hislop from the Observatories and Science Support at Geoscience Australia for technical support and Jodie Smith for reviewing the data. This dataset is published with the permission of the CEO, Geoscience Australia

  • The Lord Howe Island survey SS06-2008 in April 2008 aboard the RV Southern Surveyor was a collaboration between the University of Wollongong and Geoscience Australia. The survey was also an activity of the Commonwealth Environment Research Facilities' (CERF) Marine Biodiversity Hub, of which Geoscience Australia is a partner, and will contribute to the revised Plan of Management for the Lord Howe Marine Parks. The objectives of the survey were to map the morphology and benthic environments of the shallow shelf that surrounds Lord Howe Island as well as the deeper flanks of this largely submarine volcano. Of particular interest was the apparent drowned reef structure on the shelf and the spatial distribution of seabed habitats and infauna. The data collected are required to better understand the history of reef growth at Lord Howe Island, which sits at the southernmost limit of reef formation, and links between the physical environment and ecological processes that control the spatial distribution of biodiversity on the shelf. The morphology of the flanks of the submarine volcano was also examined to reveal whether they provide evidence of major erosional and depositional processes acting on the volcano. This report provides a description of the survey activities and the results of the processing and initial analysis of the data and samples collected.

  • In this study, we aim to identify the most appropriate methods for spatial interpolation of seabed sand content for the AEEZ using samples extracted on August 2010 from Geoscience Australia's Marine Samples Database. The predictive accuracy changes with methods, input secondary variables, model averaging, search window size and the study region but the choice of mtry. No single method performs best for all the tested scenarios. Of the 18 compared methods, RFIDS and RFOK are the most accurate methods in all three regions. Overall, of the 36 combinations of input secondary variables, methods and regions, RFIDS, 6RFIDS and RFOK were among the most accurate methods in all three regions. Model averaging further improved the prediction accuracy. The most accurate methods reduced the prediction error by up to 7%. RFOKRFIDS, with a search window size of 5, an mtry of 4 and more realistic predictions in comparison with the control, is recommended for predicting sand content across the AEEZ if a single method is required. This study provides suggestions and guidelines for improving the spatial interpolations of marine environmental data.

  • In 2012, Geoscience Australia carried out marine surveys in the Vlaming Sub-basin (Perth Basin; GA0334) and Petrel Sub-basin (Bonaparte Basin; SOL5463). The purpose of these surveys was to gather pre-competitive geophysical and biophysical data on the seabed environments within targeted areas to evaluate the seal quality for CO2 storage studies in these sub-basins. Over the duration of the Vlaming Sub-basin survey, approximately 650 km2 of multibeam sonar data, 2300 line km of sub-bottom profiler (SBP) data, 6.65 km2 of sidescan sonar imagery, 4.25 km of video footage and 89 grab samples were acquired. The Petrel Sub-basin survey acquired more than 650 km2 of multibeam sonar data and 650 line km of multi-channel SBP data. A total of 114 sampling operations recovered shallow samples or video footage for sedimentological, biological and chemical analysis. These datasets have been used to investigate possible fluid migration pathways in the shallow subsurface geology. In the Petrel Sub-basin, banks, palaeo-channels, plains, ridges and pockmark fields characterise the seafloor. In the Vlaming Sub-basin, a Holocene sediment-starved system was observed with shallow valleys, shallow terraces, sediment mega-ripples and prominent ridges on the seafloor. The complexity of both these environments and the general spatial correlation between seabed features and the subsurface geology, suggest that a large number of processes interacted to produce the present geomorphology of the continental shelves. These new datasets will contribute to the regional assessment of CO2 storage prospectivity in the Vlaming and Petrel sub-basins.

  • This dataset contains species identifications of all taxa collected from grabs during survey SOL4934 (R.V. Solander, 27 August - 24 September, 2009). Animals were collected from the Joseph Bonaparte Gulf with a Smith-MacIntyre grab. Echinoderms, molluscs, and worms were identified by taxonomists Tim O'Hara, Richard Willan, and Belinda Glasby, respectively, and lodged at museums. All other taxa were identified to operational taxonomic units by Rachel Przeslawski and lodged at the Australian Museum on the 27 August 2011. See GA Record 2010/09 for further details on survey methods and specimen acquisition.

  • A seabed mapping survey over a series of carbonate banks, intervening channels and surrounding sediment plains on the Van Diemen Rise in the eastern Joseph Bonaparte Gulf was completed under a Memorandum of Understanding between Geoscience Australia and the Australian Institute of Marine Sciences. The survey obtained detailed geological (sedimentological, geochemical, geophysical) and biological data (macro-benthic and infaunal diversity, community structure) for the banks, channels and plains to establish the late-Quaternary evolution of the region and investigate relationships between the physical environment and associated biota for biodiversity prediction. The survey also permits the biodiversity of benthos of the Van Diemen Rise to be put into a biogeographic context of the Arafura-Timor Sea and wider northern Australian marine region. Four study areas were investigated across the outer to inner shelf. Multibeam sonar data provide 100 per cent coverage of the seabed for each study area and are supplemented with geological and biological samples collected from 63 stations. In a novel approach, geochemical data collected at the stations provide an assessment of sediment and water quality for surrogacy research. Oceanographic data collected at four stations on the Van Diemen Rise will provide an understanding of the wave, tide and ocean currents as well as insights into sediment transport. A total of 1,154 square kilometres of multibeam sonar data and 340 line-km of shallow (<100 mbsf) sub-bottom profiles were collected.