From 1 - 10 / 80
  • Fisheries groups worldwide are concerned that seismic operations negatively affect catch rates within a given area, although there is a lack of field-based scientific evidence. In southeast Australia, marine seismic surveys have been blamed for mass mortalities of benthic invertebrates including the commercial scallop Pecten fumatus. Geoscience Australia conducted a 2-D seismic survey in this region in April 2015, thereby presenting an opportunity to conduct field-based experiments investigating the potential impacts on marine organisms. Moored hydrophones recorded noise before and during the seismic survey. An Autonomous Underwater Vehicle (AUV) was used to evaluate the effectiveness of seafloor images to support scallop monitoring. In addition, more traditional sampling was undertaken using a commercial scallop dredge from which a variety of biological and biochemical variables were analysed. The AUVs and dredge were deployed at three time periods (before the seismic survey, 2 months after seismic operations ceased, 10 months after seismic operations ceased), although poor-quality AUV images acquired before the survey precluded the analysis of these data. The highest sound exposure level recorded by the hydrophones was 146 dB re 1 µPa2s at 51 m water depth, at a distance of 1.4 km from the airguns. Commercial scallops were not abundant in the study area, and analysis of AUV images revealed no differences in commercial scallop types (live, clapper, dead shell, other) between experimental and control zones. Similarly, analysis of dredged scallops shows no detectable impact due to seismic activity on shell size, meat size and condition, gonad size and condition, and biochemical indices. Both AUV and dredging data showed strong spatial patterns, with significant differences between sites. Our study confirms previous work showing no evidence of immediate mortality on scallops in the field, and it expands this to include no evidence of long-term or sub-lethal effects. Negative impacts are currently confined to laboratory settings with unrealistic sound exposures. If short-term effects are investigated, we recommend a focus on the underlying mechanisms of potential impacts (i.e. physiological responses), rather than gross metrics such as mortality or size. Physiological responses to airgun sound may not be as immediately obvious as mortality or behavioural responses, but they are equally important to provide early indications of negative effects, as well as to explain the underlying mechanisms behind mortality events and reduced catch.

  • This introductory chapter provides an overview of the book's contents and definitions of key concepts including benthic habitat, potential habitat and seafloor geomorphology. The chapter concludes with a summary of commonly used habitat mapping technologies. Benthic (seafloor) habitats are physically distinct areas of seabed that are associated with particular species, communities or assemblages that consistently occur together. Benthic habitat maps are spatial representations of physically distinct areas of seabed that are associated with particular groups of plants and animals. Habitat maps can illustrate the nature, distribution and extent of distinct physical environments present and importantly they can predict the distribution of the associated species and communities.

  • Geoscience Australia has undertaken a classification of biophysical datasets to create seabed habitat maps (termed 'seascapes') for the Australian margin and adjacent sea floor. Seascapes describe a layer of ecologically meaningful biophysical properties that spatially represents potential seabed habitats. Each seascape area corresponds to a region of the seabed that contains similar biophysical properties and, by association, potential habitats and communities. This dataset is a seascape classification for the on-shelf zone of the North-west bioregion. The on-shelf zone is separated from the off-shelf zone due to the availability of the effective disturbance layer for the on-shelf zone only. Also, a higher resolution sea floor temperature layer has been used in the on-shelf analysis.

  • Lord Howe Rise is a deep sea marginal plateau located in the Coral Sea and Tasman Sea, ~125,000 km2 in area and 750 to 1200 m in water depth. An area of the western flank of northern Lord Howe Rise covering ~25,500 km2 was mapped and sampled by Geoscience Australia in 2007 to characterise the deep sea environments and benthic habitats. Geomorphic features in the survey area include ridges, valleys, plateaus and basins. Smaller superimposed features include peaks, moats, holes, polygonal furrows, scarps and aprons. The physical structure and biological composition of the seabed was characterised using towed video and sampling of epifaunal and infaunal organisms. These deep sea environments are dominated by thick depositional soft-sediments (sandy mud), with local outcrops of volcanic rock and mixed gravel-boulders. Ridge, valley and plateau environments were moderately bioturbated but few organisms were directly observed or collected. Volcanic peaks were bathymetrically complex hard-rock structures that supported sparse distributions of suspensions feeders (e.g. cold water corals and glass sponges) and associated epifauna (e.g. crinoids and brittlestars). Isolated outcrops along the sloping edge of one ridge also supported similar assemblages, some with high localised densities of coral-dominated assemblages.

  • National seascapes describing a layer of ecologically-meaningful biophysical properties that spatially represent potential seabed habitats have been derived for the Australian margin and adjacent seafloor. Seascapes were derived separately for the shelf and off-shelf regions due to different data availability. A total of 13 and 9 seascapes were derived for the on-shelf and off-shelf regions, respectively, using the unsupervised ISOCLASS classification in the software package ERMapper. Generally, the on-shelf seascapes divide into two broad latitudinal groups. The southern group (seascapes 1-7) is characterised by sandy, cooler environments relative to the northern group (seascape 9-13) which is characterised by muddier, warmer environments. Seascape 8 occurs predominantly on the west and east margins, separating the two groups. Off-shelf seascapes lack a distinct latitudinal pattern and their distribution is more related to seafloor temperature as a function of depth. For the deep-sea regions on the southern and western margins the seascapes are principally defined by rugosity and primary production. For other areas off-shelf seascape distribution is more complex and related to bathymetry and slope (rugosity).

  • This resource contains geochemistry data for the Oceanic Shoals Commonwealth Marine Reserve (CMR) in the Timor Sea collected by Geoscience Australia during September and October 2012 on RV Solander (survey GA0339/SOL5650). This dataset comprises inorganic element data from the fine fraction (Mud: <63um) of the upper ~2cm of seabed sediment. The Oceanic Shoals Commonwealth Marine Reserve survey was undertaken as an activity within the Australian Government's National Environmental Research Program Marine Biodiversity Hub and was the key component of Research Theme 4 - Regional Biodiversity Discovery to Support Marine Bioregional Plans. Hub partners involved in the survey included the Australian Institute of Marine Science, Geoscience Australia, the University of Western Australia, Museum Victoria and the Museum and Art Gallery of the Northern Territory. Data acquired during the survey included: multibeam sonar bathymetry and acoustic backscatter; sub-bottom acoustic profiles; physical samples of seabed sediments, infauna and epibenthic biota; towed underwater video and still camera observations of seabed habitats; baited video observations of demersal and pelagic fish, and; oceanographic measurements of the water column from CTD (conductivity, temperature, depth) casts and from deployment of sea surface drifters. Further information on the survey is available in the post-survey report published as Geoscience Australia Record 2013/38 (Nichol et al. 2013).

  • Geoscience Australia carried out marine surveys in Jervis Bay (NSW) in 2007, 2008 and 2009 (GA303, GA305, GA309, GA312) to map seabed bathymetry and characterise benthic environments through co-located sampling of surface sediments (for textural and biogeochemical analysis) and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wave-generated currents. Data and samples were acquired using the Defence Science & Technology Organisation (DSTO) Research Vessel Kimbla. Bathymetric mapping, sampling and tide/wave measurement were concentrated in a 3x5 km survey grid (named Darling Road Grid, DRG) within the southern part of the Jervis Bay, incorporating the bay entrance. Additional sampling and stills photography plus bathymetric mapping along transits was undertaken at representative habitat types outside the DRG. This 128 sample data set comprises major, minor and trace elements derived from x-ray fluorescence analysis of surface seabed sediments (~0-2 cm). Sediment surface area data are also presented. More Information: Radke, L.C., Huang, Z., Przeslawski, R., Webster, I.T., McArthur, M.A., Anderson, T.J., P.J. Siwabessy, Brooke, B. 2011. Including biogeochemical factors and a temporal component in benthic habitat maps: influences on infaunal diversity in a temperate embayment. Marine and Freshwater Research 62 (12): 1432 - 1448. Huang, Z., McArthur, M., Radke, L., Anderson, T., Nichol, S., Siwabessy, J. and Brooke, B. 2012. Developing physical surrogates for benthic biodiversity using co-located samples and regression tree models: a conceptual synthesis for a sandy temperature embayment. International Journal of Geographical Information Science DOI:10.1080/13658816.2012.658808.

  • To date, a range of methods have been developed and applied to the processing and analysis of underwater video and imagery, in part driven by different requirements. For example, in Australia, the marine science community who are partnered by the National Environmental Research Program (NERP) and funded by the Marine Biodiversity Hub, has developed a national CATAMI (Collaborative and Automated Tools for Analysis of Marine Imagery and video) scheme. Technological advances in recent years have improved the usability and output quality of underwater video and still images used to identify and monitor underwater habitats and structures and as a result, these techniques are more frequently applied to marine studies. So far, a comprehensive review of underwater video and still imagery processing/analysis methods has not been completed, although the number of studies utilising underwater stills and video has increased dramatically. Difficulties in diver limitation and stringent regulations applied to the collection of diver-based imagery and video data from underwater benthic habitats. Therefore, remote sensing methods such as underwater video and still imagery are becoming increasingly pivotal for ground-truthing benthic biological and physical habitats in shallow and deep marine and freshwater habitats and are also providing a permanent archive for future analyses. This review focuses on post-processing observational methods used for underwater video and still image habitat classification and quantification. We summarise the main applications, advantages and disadvantages of video and still imagery scoring methods, and illustrate recent advances in this topic.

  • The value of integrated high-resolution data sets in understanding the marine environment has been demonstrated in numerous studies around the Australian margin, however this approach has rarely been applied to studies in East Antarctica. This integrated approach was applied to a survey in Antarctica which utilised a multibeam sonar system, underwater video and sediment sampling to aid the understanding of seabed character and benthic biotopes in the coastal waters of the Vestfold Hills, near the Australian station of Davis. The Vestfold Hills is one of the largest ice-free areas on the East Antarctic coast. The coastal area is a complex of small islands, embayments and fjords. High-resolution bathymetry and backscatter data were collected over 42km2 to depths of 215 m. Epibenthic community data and in situ observations of seafloor morphology, substrate composition and bedforms were obtained from towed underwater video. The new high resolution datasets reveal a mosaic of rocky outcrops and sediment-filled basins. Analysis of the datasets was used to identify statistically distinct benthic assemblages and describe the physical habitat characteristics related to each assemblage, with seven discrete benthic biotopes identified. The biotopes include a range of habitat types including shallow coastal embayments and rocky outcrops, which are dominated by dense macroalgae communities, and deep muddy basins which are dominated by mixed invertebrate communities. Transition zones comprising steep slopes provide habitat for sessile invertebrate communities. Flat to gently sloping plains with a thin sandy cover on shallow bedrock are relatively barren. The relationship between benthic community composition and environmental parameters is complex with many variables (e.g. depth, substrate type, longitude, latitude and slope) contributing to differences in community composition. Depth and substrate type were identified as the main controls of benthic community composition, however, depth is likely a proxy for other unmeasured depth-dependent parameters such as light availability, frequency of disturbance by ice, currents and/or food availability. Sea ice cover is an important driver of benthic community composition, with dense macroalgae communities only found where ice-free conditions persist for most of the summer. The bathymetry data shows iceberg scouring is common, however, scouring does not appear to impact benthic community composition in the study area. This is the first study that has used an integrated sampling approach to investigate benthic assemblages across a range of habitats in a coastal marine environment in East Antarctica. This study demonstrates the efficacy of using multibeam and towed video systems to survey large areas of the seafloor in Antarctica where marine sampling is often logistically difficult, and to collect non-destructive high-resolution data in the sensitive Antarctic marine environment. The multibeam data provide a physical framework for understanding benthic habitats and the distribution of benthic communities. This research provides a baseline for assessing natural variability and human-induced change across the coastal marine environment (Australian Antarctic Science Project AAS-2201), contributes to Geoscience Australia's Marine Environmental Baseline Program, and supports Australian Government objectives to manage and protect the Antarctic marine environment.

  • The Tasmanian Shelf survey was conducted on the Challenger in collaboration with the Tasmanian Aquaculture and Fisheries Institute between the 13-16th June, 2008 and 23rd February to the 14th March, 2009 (GA survey #0315). The survey was operated as part of the Surrogates Program of the CERF Marine Biodiversity Hub. The objective was to collect co-located physical and biological data to enable the robust testing of a range of physical parameters as surrogates of benthic biodiversity patterns. A total of 55 video transects were surveyed from five study areas (Tasman Peninsula, Freycinet Peninsula, The Friars, Huon river, and Port Arthur channel) in water depths ranging from 15-110 m. Video was recorded to mini DV tapes, and copied to digital format. For further information on this survey please refer to the post-survey report (GA Record 2009/043 - Geocat #69755).